
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS407 DISTRIBUTED COMPUTING

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web

Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

Free Hand

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

CSE DEPARTMENT, NCERC PAMPADY Page 4

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1
Distinguish distributed computing paradigm from other computing paradigms

CO2
Identify the core concepts of distributed systems

CO3
Illustrate the mechanisms of inter process communication in distributed system

CO4
Apply appropriate distributed system principles in ensuring transparency,

consistency and fault-tolerance in distributed file system

CO5
Compare concurrency control mechanisms in distributed transaction environment

CO6
Demonstrate the need for Mutual exclusion and election algorithms

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

 PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

CO1 3

CO2 3

CO3 2 3

CO4 3

CO5 3 3

CO6 2 2

CSE DEPARTMENT, NCERC PAMPADY Page 5

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PSO

1

PSO

2

PSO

3

CO1 3

CO2 2

CO3 3

CO4 3

CO5 3

CO6 3

CSE DEPARTMENT, NCERC PAMPADY Page 6

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page 7

CSE DEPARTMENT, NCERC PAMPADY Page 8

CSE DEPARTMENT, NCERC PAMPADY Page 9

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Illustrate the characteristics of distributed

systems.

CO1 K3 14

2 Point out the examples of distributed systems. CO1 K4 14

3 Explain about issues in designing distributed

systems

CO1 K5 15

4 Describe the different failure handling methods. CO1 K2 18

5 List out the different transparencies. CO1 K4 19

6 Explain about mini computer model. CO1 K2 20

7 Differentiate between workstation and

workstation-server model.

CO1 K4 21,22

8 Compare and contrast between processor pool and

hybrid model.

CO1 K4 24,25

9 Write note on trends in distributed systems. CO1 K6 26

MODULE II

1 Explain briefly about architectural model. CO2 K5 28

2 List out the different communication entities. CO2 K4 29

3 Describe about communication paradigm. CO2 K2 30

4 Demonstrate the variations in client server model

with example.

CO2 K3 35

5 Explain about software layers. CO2 K2 37

CSE DEPARTMENT, NCERC PAMPADY Page 10

6 Write note on interaction model. CO2 K6 41

7 Explain the different failures in failure model. CO2 K2 44

8 Describe about the three generations of physical

model.

CO2 K2 48

MODULE III

1 Point out the characteristics of inter process

communication.

CO3 K4 51

2 Differentiate between TCP and UDP protocols. CO3 K4 53,55

3 Explain briefly about group communication CO3 K2 57

4 Briefly describe about types of groups. CO3 K2 59

5 Write short note on group membership

management.

CO3 K3 61

6 Explain about IP multicast. CO3 K2 65

7 Describe about RPC call semantics. CO3 K2 68

8 Explain about implementation of RPC. CO3 K5 69

9 Define network virtualization. CO3 K1 71

10 Write short note on Skype architecture. CO3 K3 72

MODULE IV

1 Write briefly about distributed file systems. CO4 K6 75

2 Explain about DFS modules. CO4 K2 75

3 Point out the requirements in DFS. CO4 K4 76

4 Explain about file system architecture. CO4 K2 77

5 Describe briefly about Sun NFS. CO4 K2 80

CSE DEPARTMENT, NCERC PAMPADY Page 11

6 Write short note on name services. CO4 K3 86

7 Explain about Domain Name Service. CO4 K2 90

8 Briefly explain about name servers and

navigation.

CO4 K5 92

MODULE V

1 Explain about transactions in detail. CO5 K5 100

2 Point out the ACID properties. CO5 K4 100

3 Distinguish between lost update and dirty read

problem.

CO5 K4 103, 104

4 Explain about conflicting operations. CO5 K2 106

5 Write short note on nested transactions. CO5 K3 108

6 Compare and contrast between two phase and

strict two phase locking methods.

CO5 K4 109,110

7 Write notes on deadlocks. CO5 K6 112

8 Explain briefly about optimistic concurrency

control.

CO5 K5 113

MODULE VI

1 Briefly describe about essential requirement for

mutual exclusion.

CO6 K2 116

2 Explain about central server algorithm. CO6 K2 117

3 Distinguish between ring based and Ricart

Agarwal algorithm.

CO6 K4 118, 119

4 Explain about Maekawa’s voting algorithm. CO6 K5 121

5 Write short note on elections. CO6 K3 122

6 Explain about ring based election algorithm. CO6 K5 123

7 Write note on Bully algorithm. CO6 K6 124

CSE DEPARTMENT, NCERC PAMPADY Page 12

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Distributed Computing VS Cloud Computing 127

2 Software concepts in Distributed Computing 129

CSE DEPARTMENT, NCERC PAMPADY Page 13

Module 1

Evolution of Distributed Computing -Issues in designing a distributed system-

Challenges- Minicomputer model –Workstation model - Workstation-Server

model–Processor - pool model- Trends in distributed systems

1.1 Evolution of Distributed Computing

 At the very beginning, one computer could only do one particular task at a

time (batch processing). Then multiprogramming introduced, which can

execute multiple programs but there is only one processor, there can be no

true simultaneous execution of different programs.

 If we need multiple tasks to be done in parallel, we need to have multiple

computers running in parallel. Multiprocessor run multiple programs

simultaneously by sharing same memory, so it is tightly coupled system.

 But running them parallel was not enough for building a truly distributed

system since it requires a mechanism to communicate between different

computers.

 Distributed Computing is a field of computer science that studies distributed

systems.

 A distributed system is a model in which components located on networked

computers communicate and coordinate their actions by passing messages.

Distributed system is said to be loosely coupled because each processor has

its own local memory.

CSE DEPARTMENT, NCERC PAMPADY Page 14

Characteristics of Distributed System

● Concurrency: Tasks carry out independently

● No global clock : Each system has its own clock and it coordinate their actions by

exchanging messages

● Independent failures : when some systems fail, others may not know, does not stop

the running of the whole system

Example Of Distributed Systems

1. The Internet

2. Mobile Computing

3. Intranet

4. Multiplayer online game

1. The Internet: A vast interconnected collection of computer networks of many

different types. Programs running on the computers connected to it interact by

passing messages, employing a common means of communication

2. Mobile Computing: Mobile computing (also called nomadic computing) is the

performance of computing tasks while the user is on the move, or visiting places

other than their usual environment.

3. Intranet: A portion of the Internet that is separately administered and has a

boundary that can be configured to enforce local security policies and composed of

several LANs linked by backbone connections.

CSE DEPARTMENT, NCERC PAMPADY Page 15

1.2 Issues in designing a distributed system/ Challenges

In distributed system, there is no global clock among the multiple processor. So it is

very hard to schedule the processor. Designing a distributed system does not come

as easy and straight forward. A number of challenges need to be overcome in order

to get the ideal system. The major challenges in distributed systems are listed below:

● Heterogeneity

● Openness

● Security

● Scalability

● Failure handling

● Concurrency

● Transparency

Heterogeneity:

The Internet enables users to access services and run applications over a

heterogeneous collection of computers and networks. Heterogeneity (that is, variety

and difference) applies to all of the following:

• Networks;

• Computer hardware;

• Operating systems;

• Programming languages;

• Implementations by different developers.

CSE DEPARTMENT, NCERC PAMPADY Page 16

Different programming languages use different representations for characters and

data structures such as arrays and records. These differences must be addressed if

programs written in different languages are to be able to communicate with one

another.

Programs written by different developers cannot communicate with one another

unless they use common standards.

- Middleware: The term middleware applies to a software layer that provides a

programming abstraction as well as masking the heterogeneity of the underlying

networks, hardware, operating systems and programming languages.

- Heterogeneity and mobile code: The term mobile code is used to refer to program

code that can be transferred from one computer to another and run at the destination

– Java applets are an example. Code suitable for running on one computer is not

necessarily suitable for running on another because executable programs are

normally specific both to the instruction set and to the host operating system.

Openness:

The openness of a computer system is the characteristic that determines whether the

system can be extended and re-implemented in various ways.

 The openness of distributed systems is determined primarily by the degree to which

new resource-sharing services can be added and be made available for use by a

variety of client programs.

To summarize:

CSE DEPARTMENT, NCERC PAMPADY Page 17

• Open systems are characterized by the fact that their key interfaces are published.

• Open distributed systems are based on the provision of a uniform communication

mechanism and published interfaces for access to shared resources.

• Open distributed systems can be constructed from heterogeneous hardware and

software, possibly from different vendors

Security:

Security for information resources has three components:

-confidentiality (protection against disclosure to unauthorized individuals)

-integrity (protection against alteration or corruption)

-availability (protection against interference with the means to access the resources).

However, security challenges have not yet been fully met: for Denial of service

attacks’ and Security of mobile code’.

Scalability:

Distributed systems operate effectively and efficiently at many different scales,

ranging from a small intranet to the Internet.

 A system is described as scalable if it will remain effective when there is a

significant increase in the number of resources and the number of users.

 The number of computers and servers in the Internet has increased dramatically.

The design of scalable distributed systems presents the following challenges:

CSE DEPARTMENT, NCERC PAMPADY Page 18

● controlling the cost of physical resources

● controlling the performance loss

● Preventing software resources running out

● Avoiding performance bottlenecks

Failure handling

Computer systems sometimes fail. When faults occur in hardware or software,

programs may produce incorrect results or may stop before they have completed the

intended computation.

Failures in a distributed system are partial – that is, some components fail while

others continue to function. Therefore the handling of failures is particularly

difficult.

● Detecting failures: Some failures can be detected. For example, checksums can be

used to detect corrupted data in a message or a file

● Masking failures: Some failures that have been detected can be hidden or made

less severe. Two examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the other may

still be correct.

● Tolerating failures: Most of the services in the Internet do exhibit failures – it

would not be practical for them to attempt to detect and hide all of the failures that

might occur in such a large network with so many components. When a web browser

CSE DEPARTMENT, NCERC PAMPADY Page 19

cannot contact a web server, it does not make the user wait forever while it keeps on

trying – it informs the user about the problem, leaving them free to try again later.

● Recovery from failures: Recovery involves the design of software so that the state

of permanent data can be recovered or ‘rolled back’ after a server has crashed

Concurrency

Both services and applications provide resources that can be shared by clients in a

distributed system. There is therefore a possibility that several clients will attempt

to access a shared resource at the same time

Transparency

Transparency is defined as the concealment from the user and the application

programmer of the separation of components in a distributed system, so that the

system is perceived as a whole rather than as a collection of independent

components.

● Access transparency: enables local and remote resources to be accessed using

identical operations.

● Location transparency: enables resources to be accessed without knowledge of

their physical or network location (for example, which building or IP address).

● Concurrency transparency: enables several processes to operate concurrently

using shared resources without interference between them.

CSE DEPARTMENT, NCERC PAMPADY Page 20

● Replication transparency: enables multiple instances of resources to be used to

increase reliability and performance without knowledge of the replicas by users or

application programmers.

● Failure transparency: enables the concealment of faults, allowing users and

application programs to complete their tasks despite the failure of hardware or

software components.

● Mobility transparency: allows the movement of resources and clients within a

system without affecting the operation of users or programs.

● Performance transparency: allows the system to be reconfigured to improve

performance as loads vary.

The most important transparency are access and location transparency. They are

referred together as network transparency.

1.3 Distributed computing system models

1.3.1 Minicomputer Model

● The minicomputer model is a simple extension of the centralized time-sharing

system.

● A distributed computing system based on this model consists of a few

minicomputers interconnected by a communication network were each

minicomputer usually has multiple users simultaneously logged on to it.

● Several interactive terminals are connected to each minicomputer. Each user

logged on to one specific minicomputer has remote access to other minicomputers.

CSE DEPARTMENT, NCERC PAMPADY Page 21

● The network allows a user to access remote resources that are available on some

machine other than the one on to which the user is currently logged. The

minicomputer model may be used when resource sharing with remote users is

desired.

● The early ARPA net is an example of a distributed computing system based on the

minicomputer model.

1.3.2 Workstation Model

● A distributed computing system based on the workstation model consists of

several workstations interconnected by a communication network.

● An organization may have several workstations located throughout an

infrastructure were each workstation is equipped with its own disk & serves as a

single-user computer.

● In such an environment, at any one time a significant proportion of the

workstations are idle which results in the waste of large amounts of CPU time.

CSE DEPARTMENT, NCERC PAMPADY Page 22

● Therefore, the idea of the workstation model is to interconnect all these

workstations by a high-speed LAN so that idle workstations may be used to process

jobs of users who are logged onto other workstations & do not have sufficient

processing power at their own workstations to get their jobs processed efficiently.

● Example: Sprite system & Xerox PARC.

1.3.3 Workstation–Server Model

● The workstation model is a network of personal workstations having its own disk

& a local file system.

● A workstation with its own local disk is usually called a diskful workstation & a

workstation without a local disk is called a diskless workstation. Diskless

workstations have become more popular in network environments than diskful

CSE DEPARTMENT, NCERC PAMPADY Page 23

workstations, making the workstation-server model more popular than the

workstation model for building distributed computing systems.

● A distributed computing system based on the workstation-server model consists

of a few minicomputers & several workstations interconnected by a communication

network.

● In this model, a user logs onto a workstation called his or her home workstation

.Normal computation activities required by the user's processes are performed at the

user's home workstation, but requests for services provided by special servers are

sent to a server providing that type of service that performs the user's requested

activity & returns the result of request processing to the user's workstation.

● Therefore, in this model, the user's processes need not migrated to the server

machines for getting the work done by those machines.

● Example: The V-System.

Advantages:

1. User has guaranteed response time

2. Does not need process migration facility due to client-server mode l of

communication

3. Users have flexibility to use any workstation and access any files.

4. Backup and hardware maintenance are easier with diskless workstation.

CSE DEPARTMENT, NCERC PAMPADY Page 24

1.3.4 Processor–Pool Model

● The processor-pool model is based on the observation that most of the time a user

does not need any computing power but once in a while the user may need a very

large amount of computing power for a short time.

● Therefore, unlike the workstation-server model in which a processor is allocated

to each user, in processor-pool model the processors are pooled together to be shared

by the users as needed.

● The pool of processors consists of a large number of microcomputers &

minicomputers attached to the network.

● Each processor in the pool has its own memory to load & run a system program

or an application program of the distributed computing system.

CSE DEPARTMENT, NCERC PAMPADY Page 25

● In this model no home machine is present & the user does not log onto any

machine.

● This model has better utilization of processing power & greater flexibility.

● Example: Amoeba & the Cambridge Distributed Computing System.

1.3.5 Hybrid Model

● The workstation-server model has a large number of computer users only

performing simple interactive tasks &-executing small programs.

● In a working environment that has groups of users who often perform jobs needing

massive computation, the processor-pool model is more attractive & suitable.

● To combine Advantages of workstation-server & processor-pool models, a hybrid

model can be used to build a distributed system.

● The processors in the pool can be allocated dynamically for computations that are

too large or require several computers for execution.

CSE DEPARTMENT, NCERC PAMPADY Page 26

● The hybrid model gives guaranteed response to interactive jobs allowing them to

be more processed in local workstations of the users

1.4 Trends in distributed systems

Distributed systems are undergoing a period of significant change and this can be

traced back to a number of influential trends:

• The emergence of pervasive networking technology

• The emergence of ubiquitous computing coupled with the desire to support user

mobility in distributed systems

• The increasing demand for multimedia services

• The view of distributed systems as a utility.

1.4.1 Pervasive networking and the modern Internet

The modern Internet is a vast interconnected collection of computer networks of

many different types, with the range of types increasing all the time. Example, a

wide range of wireless communication technologies such as WiFi, WiMAX,

Bluetooth and third-generation mobile phone networks. The net result is that

networking has become a pervasive resource and devices can be connected (if

desired) at any time and in any place

1.4.2 Mobile and ubiquitous computing

Technological advances in device miniaturization and wireless networking have led

increasingly to the integration of small and portable computing devices into

distributed systems. These devices include:

● Laptop computers.

CSE DEPARTMENT, NCERC PAMPADY Page 27

● Handheld devices, including mobile phones, smart phones, GPS-enabled devices,

pagers, personal digital assistants (PDAs), video cameras and digital cameras.

● Wearable devices, such as smart watches with functionality similar to a PDA.

● Devices embedded in appliances such as washing machines, hi-fi systems, cars

and refrigerators.

The portability of many of these devices, together with their ability to connect

conveniently to networks in different places, makes mobile computing possible.

Mobile computing is the performance of computing tasks while the user is on the

move, or visiting places other than their usual environment.

1.4.3 Distributed multimedia systems

Another important trend is the requirement to support multimedia services in

distributed systems. The benefits of distributed multimedia computing are

considerable in that a wide range of new (multimedia) services and applications can

be provided on the desktop, including access to live or pre-recorded television

broadcasts, access to film libraries offering video-on-demand services, access to

music libraries, the provision of audio and video conferencing facilities and

integrated telephony features including IP telephony or related technologies such as

Skype, a peer-to-peer alternative to IP telephony.

Webcasting is an application of distributed multimedia technology. Webcasting is

the ability to broadcast continuous media, typically audio or video, over the Internet.

1.4.4 Distributed computing as a utility

With the increasing maturity of distributed systems infrastructure, a number of

companies are promoting the view of distributed resources as a commodity or utility,

drawing the analogy between distributed resources.

eg. Cloud computing, grid computing

CSE DEPARTMENT, NCERC PAMPADY Page 28

Module 2

System models: Physical models - Architectural models -Fundamental models

 System Models:

It describes common properties and design choice of dispatcher for distributed

system in a single descriptive model.

Three types of models

● Architectural Models

● Fundamental Models

● Physical Models

2.1 Architectural Models:

Architecture models define the main components of the system, what their roles are

and how they interact (software architecture), and how they are deployed in an

underlying network of computers (system architecture).

Architecture model is concerned with the placement of its parts, namely how

components are mapped to underlying network and the relationship between them,

that is, their functional roles and patterns of communication between them.

Architectural Model- including,

● System Architectures

● Architectural elements

● Software layers

● Variations on the client-server model

2.1.1 Architectural elements

CSE DEPARTMENT, NCERC PAMPADY Page 29

To understand the fundamental building blocks of a distributed system, it is

necessary to consider four key questions:

• What are the entities that are communicating in the distributed system?

• How do they communicate, or, more specifically, what communication paradigm

is used?

• What (potentially changing) roles and responsibilities do they have in the overall

architecture?

• How are they mapped on to the physical distributed infrastructure (what is their

placement)?

Communicating entities: what is communicating and how those entities

communicate together define a rich design space for the distributed systems

developer to consider. It is helpful to address the first question from a system-

oriented and a problem-oriented perspective.

From a system perspective, the answer is normally very clear in that the entities that

communicate in a distributed system are typically processes, leading to the

prevailing view of a distributed system as processes coupled with appropriate inter-

process communication paradigms.

From a programming perspective, however, this is not enough, and moreproblem-

oriented abstractions have been proposed:

Objects: Objects have been introduced to enable and encourage the use of object

oriented approaches in distributed systems (including both object-oriented design

and object-oriented programming languages).

Components: Since their introduction a number of significant problems have been

identified with distributed objects, and the use of component technology has

CSE DEPARTMENT, NCERC PAMPADY Page 30

emerged as a direct response to such weaknesses. Components resemble objects in

that they offer problem-oriented abstractions for building distributed systems and

are also accessed through interfaces.

Web services : Web services represent the third important paradigm for the

development of distributed systems. Web services are closely related to objects and

components, again taking an approach based on encapsulation of behavior and

access through interfaces.

Communication paradigms: deals with how entities communicate in a distributed

system, and consider three communication paradigm:

● Inter-process communication

● Remote invocation

● Indirect communication.

Inter-process communication refers to the relatively low-level support for

communication between processes in distributed systems, including message-

passing primitives, direct access to the API offered by Internet protocols (socket

programming) and support for multicast communication.

Remote invocation represents the most common communication paradigm in

distributed systems, covering a range of techniques based on a two-way exchange

between communicating entities in a distributed system and resulting in the calling

of a remote operation (Request-reply protocols). Request-reply protocols are

effectively a pattern imposed on an underlying procedure or method.

Request-reply protocols: Request-reply protocols are effectively a pattern imposed

on an underlying message-passing service to support client-server computing. In

CSE DEPARTMENT, NCERC PAMPADY Page 31

particular, such protocols typically involve a pairwise exchange of messages from

client to server and then from server back to client, with the first message containing

an encoding of the operation to be executed at the server and also an array of bytes

holding associated arguments and the second message containing any results of the

operation,

-Remote procedure calls : In RPC, procedures in processes on remote computers can

be called as if they are procedures in the local address space. The underlying RPC

system then hides important aspects of distribution, including the encoding and

decoding of parameters and results, the passing of messages and the preserving of

the required semantics for the procedure call.

-Remote method invocation: Remote method invocation (RMI) strongly resembles

remote procedure calls but in a world of distributed objects. With this approach, a

calling object can invoke a method in a remote object. As with RPC, the underlying

details are generally hidden from the user.

Indirect communication through a third entity, allowing a strong degree of

decoupling between senders and receivers. In particular:

● Senders do not need to know who they are sending to (space uncoupling).

● Senders and receivers do not need to exist at the same time (time uncoupling).

Key techniques for indirect communication include:

Group communication: Group communication is concerned with the delivery of

messages to a set of recipients and hence is a multiparty communication paradigm

CSE DEPARTMENT, NCERC PAMPADY Page 32

supporting one-to-many communication. Group communication relies on the

abstraction of a group which is represented in the system by a group identifier.

Publish-subscribe systems: Many systems, such as the financial trading example

can be classified as information-dissemination systems wherein a large number of

producers (or publishers) distribute information items of interest (events) to a

similarly large number of consumers (or subscribers). Publish-subscribe systems all

share the crucial feature of providing an intermediary service that efficiently ensures

information generated by producers is routed to consumers who desire this

information.

Message queues: Whereas publish-subscribe systems offer a one-to-many style of

communication; message queues offer a point-to-point service whereby producer

processes can send messages to a specified queue and consumer processes can

receive messages from the queue or be notified of the arrival of new messages in the

queue.

Tuple spaces: Tuple spaces offer a further indirect communication service by

supporting a model whereby processes can place arbitrary items of structured data,

called tuples, in a persistent tuple space and other processes can either read or

remove such tuples from the tuple space by specifying patterns of interest.

Distributed shared memory: Distributed shared memory (DSM) systems provide an

abstraction for sharing data between processes that do not share physical memory.

Programmers are nevertheless presented with a familiar abstraction of reading or

writing (shared) data structures as if they were in their own local address spaces,

thus presenting a high level of distribution transparency.

CSE DEPARTMENT, NCERC PAMPADY Page 33

2.1.2 System Architectures: deals with the roles and responsibility

● Client- server model

● Services provided by multiple servers.

● Proxy servers and caches.

● Peer processes

Client- server model

The system is structured as a set of processes, called servers, that offer services to

the users, called clients. The client-server model is usually based on a simple

request/reply protocol, implemented with send/receive.

● The client sends a request message to the server asking for some service.

● The server does the work and return a result or error code if the work could not be

performed.

Web servers and most other Internet services are clients of the DNS service, which

translates Internet domain names to network addresses. Another web-related

example concerns search engines, which enable users to look up summaries of

information available on web pages at sites throughout the Internet. These

summaries are made by programs called web crawlers, which run in the background

at a search engine site using HTTP requests to access web servers throughout the

Internet.

CSE DEPARTMENT, NCERC PAMPADY Page 34

Services provided by multiple servers

Services may be implemented as several server processes in separate host computers

interacting as necessary to provide a service to client processes. The Web provides

a common example of partitioned data in which each web server manages its own

set of resources. A user can employ a browser to access a resource at any one of the

servers.

Proxy servers and caches

Proxy servers are used to increase availability and performance of the services by

reducing the load on the network and web-server. Proxy server provides

copies(replications) of resources which are managed by other server. Web browsers

maintain a cache of recently visited web pages and other web resources in the client’s

local file system, using a special HTTP request to check with the original server that

cached pages are up-to-date before displaying them.

CSE DEPARTMENT, NCERC PAMPADY Page 35

Peer processes

All processes (objects) play similar roles without distinction between client or

servers. It distributes shared resources widely and it share computing and

communication loads.

2.1.3 Variations on the client-server model (mapping)

● Mobile code

● Mobile agent

CSE DEPARTMENT, NCERC PAMPADY Page 36

● Thin client

● Network computers

Mobile code: It is used to refer to code that can be sent from one computer to another

and run at the destination. Its advantage is remote invocations are replaced by local

ones so no need to suffer from the delays. Example: java applets

Step: 1

The user running a browser selects a link to applets whose code is stored on a web

server. The code is downloaded to the browser and runs there.

Step: 2

Client interacts with the applet.

CSE DEPARTMENT, NCERC PAMPADY Page 37

Mobile agent: It is a running program that travels from one computer to another

carrying out a task to someone’s behalf , such as collecting information, eventually

returning with the results

Thin client: A thin client is a lightweight computer that establish a remote

connection with a server-based computing environment. This architecture has low

management and hardware cost. Here instead of downloading applications into

user's computer, it runs on computer server.

Network computers: It downloads its operating system and any application

software needed by the user from a remote server. Applications are run locally but

files are managed by remote file server.

2.1.4 Software layers:

The layered architecture expressed in term of service layers offers a software

abstraction, with higher layers being unaware of implementation details, or indeed

of any other layers beneath them.

CSE DEPARTMENT, NCERC PAMPADY Page 38

Platform for distributed systems and applications consists of the lowest-level

hardware and software layers. These low-level layers provide services to the layers

above them, which are implemented independently in each computer, bringing the

system’s programming interface up to a level that facilitates communication and

coordination between processes. Intel x86/Windows, Intel x86/Solaris, Intel

x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major examples.

Middleware was defined as a layer of software whose purpose is to mask

heterogeneity and to provide a convenient programming model to application

programmers. The activities of a middleware such as:

➢ Remote method invocation

CSE DEPARTMENT, NCERC PAMPADY Page 39

➢ Communication between groups of processes

➢ Notification of events

➢ The partitioning, placement and retrieval of shared data objects amongst

cooperating computers;

➢ The replication of shared data objects;

➢ The transmission of multimedia data in real time.

Tiered architecture - Tiering is a technique to organize functionality of a given

layer and place this functionality into appropriate servers and, as a secondary

consideration, on to physical nodes.

The concepts of two- and three-tiered architecture are:

● The presentation logic, which is concerned with handling user interaction and

updating the view of the application as presented to the user.

● The application logic, which is concerned with the detailed application-specific

processing associated with the application (also referred to as the business logic,

although the concept is not limited only to business applications).

● The data logic, which is concerned with the persistent storage of the application,

typically in a database management system.

CSE DEPARTMENT, NCERC PAMPADY Page 40

Comparison between two-tier and three-tier architecture:

2.2 Fundamental Models:

Fundamental models deal with formal description of the properties that is common

to architecture models. Specific about the characteristic and the failures and security

risks they might exhibit.

CSE DEPARTMENT, NCERC PAMPADY Page 41

● Interaction Models – processes interact by passing msgs and coordination b/w

them.

● Failure Models – defines and classifies the failures.

● Security Models – modular nature and openness of the DS exposes it to the

external and internal attacks.

2.2.1 Interaction Models:

Computation occurs within processes; the processes interact by passing messages,

resulting in communication (information flow) and coordination (synchronization

and ordering of activities) between processes. Interacting processes in a distributed

system are affected by two significant factors:

1. Performance of communication channels

● Latency: delay between sending and receipt of a message

● Jitter: jitter is the deviation from true periodicity of a presumably periodic signa

● Throughput: No. of Packet send per unit time

● Bandwidth: total no. of information send per unit time

2. Computer clocks:

Each computer in a distributed system has its own internal clock to supply the value

of the current time to local processes. Therefore, two processes running on different

computers read their clocks at the same time may take different time values. Clock

drift rate refers to the relative amount a computer clock differs from a perfect

reference clock.

Two variants of the interactive model:

-Synchronous distributed systems

CSE DEPARTMENT, NCERC PAMPADY Page 42

-Asynchronous distributed systems

Synchronous distributed systems:

● The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded time.

• Each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems: A system in which there are no bounds on:

● process execution times.

● message delivery times.

● clock drift rate.

Event ordering:

Consider the following set of exchanges between groups of email

● users, X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both

X’s message and Y’s reply and sends another reply, which references both X’s and

Y’s messages. But due to the independent delays in message delivery, the messages

may be delivered as shown in Figure.

CSE DEPARTMENT, NCERC PAMPADY Page 43

If clocks cannot be synchronized perfectly across a distributed system, Lamport

proposed a model of logical time that can be used to provide an ordering among the

events at processes running in different computers in a distributed system. Logically,

we know that a message is received after it was sent. Therefore we can state a logical

ordering for pairs of events shown in Figure below:

 for example, considering only the events concerning X and Y:

X sends m 1 before Y receives m 1 ;

Y sends m 2 before X receives m 2 .

CSE DEPARTMENT, NCERC PAMPADY Page 44

We also know that replies are sent after receiving messages, so we have the

following logical ordering for Y:

Y receives m 1 before sending m 2 .

Logical time takes this idea further by assigning a number to each event

corresponding to its logical ordering, so that later events have higher numbers than

earlier ones. For example, Figure shows the numbers 1 to 4 on the events at X and

Y.

2.2.2 Failure model

The failure model attempts to give a precise specification of the faults that can be

exhibited by processes and communication channels. Failure may occur in order to

provide an understanding of its effects, Including,

1. Omission Failures : Process or channel failed to do something. The chief

omission failure of a process is crash and dropping message. When we say that a

process has crashed we mean that it has halted and will not execute any further steps

of its program ever. The communication channel produces an omission failure if it

does not transport a message from p’s outgoing message buffer to q’s incoming

message buffer. This is known as ‘dropping messages’

CSE DEPARTMENT, NCERC PAMPADY Page 45

2. Arbitrary Failures/ Byzantine failure: Any Security Models type of error can

occur in processes or channels. For example, a process may set wrong values in its

data items, or it may return a wrong value in response to an invocation. An arbitrary

failure of a process is one in which it arbitrarily omits intended processing steps or

takes unintended processing steps

3. Timing Failures: Applicable only to synchronous distributed systems where time

limits may not be met. Time limits are set to processes execution, communications

and clock drifts rate. A timing faults occurs if any of this time limits exceeded.

4. Masking Failures: A service masks a failure by hiding it or converting it into a

more acceptable type of failure. Checksums are used to mask corrupting messages -

> an corrupted message is handled as a missing message. Message omission failures

can be hidden by retransmitting messages.

The term reliable communication is defined in terms of validity and integrity as

follows:

-Validity: Any message in the outgoing message buffer is eventually delivered to the

incoming message buffer.

-Integrity: The message received is identical to one sent, and no messages are

delivered twice.

2.2.3 Security Models

Security of a distributed system can be achieved by securing the processes and the

channels used for their interactions and by protecting the objects that they

encapsulate against unauthorized access. Security model includes,

CSE DEPARTMENT, NCERC PAMPADY Page 46

● Protecting Objects

1. Access Rights: who is allowed to perform the operations of an object.

2. Principal: the authority who has some rights on the object.

● Securing processes and their interactions.

1. The enemy: The threats from a potential enemy include threats to processes and

threats to communication channels. Threats to processes: A process that is designed

to handle incoming requests may receive a message from any other process in the

distributed system, and it cannot necessarily determine the identity of the sender.

Threats to communication channels: An enemy can copy, alter or inject messages as

they travel across the network and its intervening gateways. Such attacks present a

threat to the privacy and integrity of information as it travels over the network and

to the integrity of the system.

2. Defeating security threats

CSE DEPARTMENT, NCERC PAMPADY Page 47

● Cryptography and shared secrets: cryptography is the science of keeping

messages secure, and encryption is the process of scrambling a message in such a

way as to hide its contents.

● Authentication: The use of shared secrets and encryption provides the basis for

the authentication of messages – proving the identities supplied by their senders.

● Secure channels: Encryption and authentication are used to build secure channels

as a service layer on top of existing communication services. A secure channel is a

communication channel connecting a pair of processes, each of which acts on behalf

of a principal.

A secure channel has the following properties:

● Each of the processes knows reliably the identity of the principal on whose behalf

the other process is executing. Therefore if a client and server communicate via a

secure channel

● A secure channel ensures the privacy and integrity (protection against tampering)

of the data transmitted across it.

● Each message includes a physical or logical timestamp to prevent messages from

being replayed or reordered

3. Other possible threats from an enemy

CSE DEPARTMENT, NCERC PAMPADY Page 48

Two further security threats – denial of service attacks and the deployment of mobile

code.

● Denial of service: This is a form of attack in which the enemy interferes with the

activities of authorized users by making excessive and pointless invocations on

services or message transmissions in a network, resulting in overloading of physical

resources

● Mobile code: Mobile code raises new and interesting security problems for any

process that receives and executes program code from elsewhere, such as the email

attachment. Such code may easily play a Trojan horse role, purporting to fulfil an

innocent purpose.

The uses of security models

The use of security techniques such as encryption and access control incurs

substantial processing and management costs.

2.3 Physical model

Baseline of physical model is, a distributed system one in which hardware or

software components located at networked computers communicate and coordinate

their actions only by passing messages. This leads to a minimal physical model of a

distributed system as an extensible set of computer nodes interconnected by a

computer network for the required passing of messages.

Three generations of distributed systems.

● Early distributed system

● Internet-scale distributed systems

● Contemporary distributed systems

CSE DEPARTMENT, NCERC PAMPADY Page 49

2.3.1 Early distributed systems

Such systems emerged in the late 1970s and early 1980s in response to the

emergence of local area networking technology. These systems typically consisted

of between 10 and 100 nodes interconnected by a local area network, with limited

Internet connectivity and supported a small range of services. Individual systems

were largely homogeneous and openness was not a primary concern. Providing

quality of service was still very much in its infancy and was a focal point for much

of the research around such early systems.

2.3.2 Internet-scale distributed systems

Larger-scale distributed systems started to emerge in the 1990s in response to the

dramatic growth of the Internet (for example, the Google search engine was first

launched in 1996). In such systems, , an extensible set of nodes interconnected by a

network of networks (the Internet). They incorporate large numbers of nodes and

provide distributed system services for global organizations. The level of

heterogeneity in such systems is significant in terms of networks, computer

architecture, operating systems, languages employed and the development teams

involved. This has led to an increasing emphasis on open standards

2.3.3 Contemporary distributed systems

In the above systems, nodes were typically desktop computers and therefore

relatively static, discrete (not embedded within other physical entities) and

autonomous.

• The emergence of mobile computing has led to physical models where nodes such

as laptops or smart phones may move from location to location in a distributed

system

CSE DEPARTMENT, NCERC PAMPADY Page 50

• The emergence of ubiquitous computing has led to a move from discrete nodes to

architectures where computers are embedded in everyday objects and in the

surrounding environment

• The emergence of cloud computing and, in particular, cluster architectures have

led to a move from autonomous nodes performing a given role to pools of nodes that

together provide a given service.

The end result is a physical architecture with a significant increase in the level of

heterogeneity embracing, openness and quality of service. Such systems potentially

involve up to hundreds of thousands of nodes.

Distributed systems of systems: The emergence of ultra- large-scale (ULS)

distributed systems. A system of systems can be defined as a complex system

consisting of a series of subsystems that are systems in their own right and that come

together to perform a particular task

CSE DEPARTMENT, NCERC PAMPADY Page 51

MODULE 3

INTERPROCESS COMMUNICATION

Interprocess communication (IPC) is a set of programming interfaces that allow

a programmer to coordinate activities among different program processes that can

run concurrently in an operating system. It take place by message passing.

Application program interface (API) is a set of routines, protocols, and tools for

building software applications. It includes,

1. The characteristics of Inter-process Communication.

2. Sockets

3. UDP Datagram Communication

4. TCP Stream Communication

The characteristics of Inter-process Communication.

Message passing between a pair of processes can be supported by two message

communication operations, send and receive, defined in terms of destinations and

messages. To communicate, one process sends a message (a sequence of bytes) to a

destination and another process at the destination receives the message. This activity

involves the communication of data from the sending process to the receiving

process and may involve the synchronization of the two processes. Including,

1. Synchronous and Asynchronous Communication

2. Message Destinations

3. Reliability

4. Ordering

● Synchronous and Asynchronous Communication

A queue is associated with each message destination. Sending processes cause

messages to be added to remote queues and receiving processes remove messages

CSE DEPARTMENT, NCERC PAMPADY Page 52

from local queues. Communication between the sending and receiving processes

may be either synchronous or asynchronous.

-In synchronous form of communication, the sending and receiving process

synchronize at every message. In the synchronous form, both send and receive are

blocking operations.

- In asynchronous form of communication, the sending operation is non-blocking

and the receive operation can have blocking and non-blocking variants. The sending

process is allowed to proceed as soon as the message has been copied to a local

buffer, and the transmission of the message proceeds in parallel with the sending

process. In the non-blocking variant, the receiving process proceeds with its program

after issuing a receive operation, which provides a buffer to be filled in the

background, but it must separately receive notification that its buffer has been filled,

by polling or interrupt.

● Message Destinations

In the Internet protocols, messages are sent to local port. A local port is a message

Destination within a computer, specified as an integer. A port has exactly one

receiver (multicast ports are an exception) but can have many senders.

● Reliability : Reliable communication in defined terms of validity and integrity. A

point to point message service is described as reliable- messages are guaranteed to

be delivered despite a reasonable number of packets being dropped or lost. For

integrity, messages must arrive uncorrupted and without duplication.

● Ordering : Some applications require that messages be delivered in sender order

– that is, the order in which they were transmitted by the sender. The delivery of

messages out of sender order is regarded as a failure by such applications.

Sockets

CSE DEPARTMENT, NCERC PAMPADY Page 53

Processes can send and receive messages via a socket. Interprocess communication

consists of transmitting a message between a socket in one process and a socket in

another process. Sockets need to be bound to a port number and an Internet address

in order to send and receive messages. Each socket has a transport protocol (TCP or

UDP). Both form of communication, UDP and TCP, use the socket, which provides

endpoint for communication between processes.

Java API for Internet addresses : As the IP packets underlying UDP and TCP are

sent to Internet addresses, Java provides a class, InetAddress , that represents

Internet addresses. Users of this class refer to computers by Domain Name System

(DNS) host names.

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

UDP Datagram Communication

The User Datagram Protocol (UDP) is a transport layer protocol. The service

provided by UDP is an unreliable service that provides no guarantees for delivery

and no protection from duplication. Some issues relating to datagram

communication Including

● Message Size

● Blocking

● Timeouts

CSE DEPARTMENT, NCERC PAMPADY Page 54

● Receive from any

Message Size: Receiving process specify an array of bytes to receive message. If

size of the message is bigger than the array, then message is truncated.

Blocking: Sockets normally provide non-blocking sends and blocking receives for

datagram communication. On arrival, the message is placed in a queue for the socket

that is bound to the destination port. The message can be collected from the queue

Messages are discarded at the destination if no process already has a socket bound

to the destination port.

Timeouts: A process that has invoked a receive operation should wait indefinitely

in situations where the sending process may have crashed or the expected message

may have been lost. To allow for such requirements, timeouts can be set on sockets.

Choosing an appropriate timeout interval is difficult, but it should be fairly large in

comparison with the time required to transmit a message.

Receive from any: The receive method does not specify an origin for messages.

Instead, an invocation of receive gets a message addressed to its socket from any

origin.

Failure model for UDP datagrams : A failure model for communication channels

and defines reliable communication in terms of two properties: integrity and validity.

The integrity property requires that messages should not be corrupted or duplicated.

The use of a checksum ensures that there is a negligible probability that any message

received is corrupted. UDP datagrams suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of a

checksum error or because no buffer space is available at the source or destination.

Use of UDP: the Domain Name System(DNS), Simple Network Management

Protocol (SNMP) , Voice over IP (VOIP)

Java API for UDP datagrams: The Java API provides datagram communication

by means of two classes: DatagramPacket and DatagramSocket.

CSE DEPARTMENT, NCERC PAMPADY Page 55

DatagramPacket: This class provides a constructor that makes an instance out of an

array

DatagramSocket: This class supports sockets for sending and receiving UDP

datagrams

TCP Stream communication

TCP guarantees delivery of data and also guarantees that packets will be delivered

in the same order in which they were sent. TCP is a connection-oriented protocol,

which means a connection is established and maintained until the application

programs at each end have finished exchanging messages.

The following characteristics of the network are hidden by the stream abstraction:

● Message sizes: The application can choose how much data it writes to a stream or

reads from it. It may deal in very small or very large sets of data. The underlying

implementation of a TCP stream decides how much data to collect before

transmitting it as one or more IP packets.

● Lost messages: The TCP protocol uses an acknowledgement scheme. If the sender

does not receive an acknowledgement within a timeout, it retransmits the message.

● Flow control: The TCP protocol attempts to match the speeds of the processes

that read from and write to a stream. If the writer is too fast for the reader, then it is

blocked until the reader has consumed sufficient data.

CSE DEPARTMENT, NCERC PAMPADY Page 56

● Message duplication and ordering: Message identifiers are associated with each

IP packet, which enables the recipient to detect and reject duplicates, or to reorder

messages that do not arrive in sender order.

● Message destinations: A pair of communicating processes establishes a

connection before they can communicate over a stream. Establishing a connection

involves a connect request from client to server followed by an accept request from

server to client before any communication can take place.

The API for stream communication assumes that when a pair of processes are

establishing a connection, one of them plays the client role and the other plays the

server role, but thereafter they could be peers. The client role involves creating a

stream socket bound to any port and then making a connect request asking for a

connection to a server at its server port. The server role involves creating a listening

socket bound to a server port and waiting for clients to request connections. The

listening socket maintains a queue of incoming connection requests. In the socket

model, when the server accepts a connection, a new stream socket is created for the

server to communicate with a client. The pair of sockets in the client and server are

connected by a pair of streams, one in each direction. Thus each socket has an input

stream and an output stream.

When an application closes a socket, this indicates that it will not write any more

data to its output stream. Any data in the output buffer is sent to the other end of the

stream and put in the queue at the destination socket, with an indication that the

stream is broken. When a process exits or fails, all of its sockets are eventually closed

and any process attempting to communicate with it will discover that its connection

has been broken.

Failure model • To satisfy the integrity property of reliable communication, TCP

streams use checksums to detect and reject corrupt packets and sequence numbers

to detect and reject duplicate packets. For the sake of the validity property, TCP

streams use timeouts and retransmissions to deal with lost packets. Therefore,

messages are guaranteed to be delivered even when some of the underlying packets

are lost. The TCP software responsible for sending messages will receive no

acknowledgements and after a time will declare the connection to be broken.

CSE DEPARTMENT, NCERC PAMPADY Page 57

Use of TCP:

● HTTP :-The Hypertext Transfer Protocol is used for communication between web

browsers and web servers.

● FTP: The File Transfer Protocol allows directories on a remote computer to be

browsed and files to be transferred from one computer to another over a connection.

● Telnet: Telnet provides access by means of a terminal session to a remote

computer.

● SMTP: The Simple Mail Transfer Protocol is used to send mail between

computers.

Java API for TCP streams: The Java interface to TCP streams is provided in the

classes ServerSocket and Socket :

ServerSocket: This class is intended for use by a server to create a socket at a server

port for listening for connect requests from clients.

Socket: This class is for use by a pair of processes with a connection.

3.2 Group communication

Group communication provides an example of an indirect communication paradigm.

Group communication offers a service whereby a message is sent to a group and

then this message is delivered to all members of the group. Group communication

represents an abstraction over multicast communication With the added guarantees,

group communication is to IP multicast what TCP is to

the point-to-point service in IP. Group communication is an important building block

for distributed systems, and particularly reliable distributed systems, with key areas

of application including:

CSE DEPARTMENT, NCERC PAMPADY Page 58

● The reliable dissemination of information to potentially large numbers of clients,

including in the financial industry, where institutions require accurate and up-to-date

access to a wide variety of information sources.

● Support for collaborative applications, where again events must be disseminated

to multiple users to preserve a common user view – for example, in multiuser games.

● Support for a range of fault-tolerance strategies, including the consistent update of

replicated data or the implementation of highly available (replicated) servers.

● Support for system monitoring and management, including for example load

balancing strategies.

The programming model

In group communication, the central concept is that of a group with associated group

membership , whereby processes may join or leave the group. Processes can then

send a message to this group and have it propagated to all members of the group

with certain guarantees in terms of reliability and ordering. Thus, group

communication implements multicast communication, in which a message is sent to

all the members of the group by a single operation. Communication to all processes

in the system, as opposed to a subgroup of them, is known as broadcast, whereas

communication to a single process is known as unicast.

Process groups and object groups• Most work on group services focuses on the

concept of process groups, that is, groups where the communicating entities are

processes. Such services are relatively low-level in that:

• Messages are delivered to processes and no further support for dispatching is

provided.

• Messages are typically unstructured byte arrays with no support for marshalling of

complex data types.

CSE DEPARTMENT, NCERC PAMPADY Page 59

Object groups provide a higher-level approach to group computing. An object group

is a collection of objects (normally instances of the same class) that process the same

set of invocations concurrently, with each returning responses.

Types of groups

Closed and open groups : A group is said to be closed if only members of the group

may multicast to it (Figure 3.2). A process in a closed group delivers to itself any

message that it multicasts to the group. A group is open if processes outside the

group may send to it.

Closed groups of processes are useful, for example, for cooperating servers to send

messages to one another that only they should receive. Open groups are useful, for

example, for delivering events to groups of interested processes.

Overlapping and non-overlapping groups: In overlapping groups, entities

(processes or objects) may be members of multiple groups, and non-overlapping

groups imply that membership does not overlap.

Synchronous and asynchronous systems: There is a requirement to consider group

communication in both environments.

Implementation issues

CSE DEPARTMENT, NCERC PAMPADY Page 60

Implementation issues for group communication services, discussing the properties

of the underlying multicast service in terms of reliability and ordering and also the

key role of group membership management in dynamic environments.

1. Reliability and ordering in multicast • In group communication, all members of

a group must receive copies of the messages sent to the group, generally with

delivery guarantees. The guarantees include agreement on the set of messages that

every process in the group should receive and on the delivery ordering across the

group members. Reliability in one-to-one communication was defined in terms of

two properties: integrity (the message received is the same as the one sent, and no

messages are delivered twice) and validity (any outgoing message is eventually

delivered).

The interpretation for reliable multicast builds on these properties, with integrity

defined the same way in terms of delivering the message correctly at most once, and

validity guaranteeing that a message sent will eventually be delivered. To extend the

semantics to cover delivery to multiple receivers, a third property is added – that of

agreement, stating that if the message is delivered to one process, then it is delivered

to all processes in the group.

FIFO ordering : First-in-first-out (FIFO) ordering (also referred to as source

ordering) is concerned with preserving the order from the perspective of a sender

process, in that if a process sends one message before another, it will be delivered in

this order at all processes in the group.

Causal ordering: Causal ordering takes into account causal relationships between

messages, in that if a message happens before another message in the distributed

system this so-called causal relationship will be preserved in the delivery of the

associated messages at all processes.

Total ordering : In total ordering, if a message is delivered before another message

at one process, then the same order will be preserved at all processes.

CSE DEPARTMENT, NCERC PAMPADY Page 61

2. Group membership management • The key elements of group communication

management are summarized in Figure 3.3, which shows an open group.

This diagram illustrates the important role of group membership management in

maintaining an accurate view of the current membership, given that entities may

join, leave or indeed fail. In more detail, a group membership service has four main

tasks:

Providing an interface for group membership changes: The membership service

provides operations to create and destroy process groups and to add or withdraw a

process to or from a group. In most systems, a single process may belong to several

groups at the same time (overlapping groups, as defined above). This is true of IP

multicast, for example.

Failure detection : The service monitors the group members not only in case they

should crash, but also in case they should become unreachable because of a

communication failure. The detector marks processes as Suspected or Unsuspected

. The service uses the failure detector to reach a decision about the group’s

membership: it excludes a process from membership if it is suspected to have failed

or to have become unreachable.

CSE DEPARTMENT, NCERC PAMPADY Page 62

Notifying members of group membership changes: The service notifies the group’s

members when a process is added, or when a process is excluded (through failure or

when the process is deliberately withdrawn from the group).

Performing group address expansion: When a process multicasts a message, it

supplies the group identifier rather than a list of processes in the group. The

membership management service expands the identifier into the current group

membership for delivery.

Case study: the JGroups toolkit

JGroups is a toolkit for reliable group communication written in Java. JGroups

supports process groups in which processes are able to join or leave a group, send a

message to all members of the group or indeed to a single member, and receive

messages from the group.

The architecture of JGroups is shown in Figure 3.4, which shows the main

components of the JGroups implementation:

CSE DEPARTMENT, NCERC PAMPADY Page 63

• Channels represent the most primitive interface for application developers, offering

the core functions of joining, leaving, sending and receiving.

• Building blocks offer higher-level abstractions, building on the underlying service

offered by channels. Examples of building blocks in JGroups are:

• MessageDispatcher is the most intuitive of the building blocks offered in JGroups.

In group communication, it is often useful for a sender to send a message to a group

and then wait for some or all of the replies. MessageDispatcher supports this by

providing a castMessage method that sends a message to a group and blocks until a

specified number of replies are received (for example, until a specified number n, a

majority, or all messages are received).

• RpcDispatcher takes a specific method (together with optional parameters and

results) and then invokes this method on all objects associated with a group. As with

MessageDispatcher , the caller can block awaiting some or all of the replies.

• NotificationBus is an implementation of a distributed event bus, in which an event

is any serializable Java object. This class is often used to implement consistency in

replicated caches.

The protocol stack • JGroups follows the architectures offered by Horus and

Ensemble by constructing protocol stacks out of protocol layers. In this approach, a

protocol is a bidirectional stack of protocol layers with each layer implementing the

following two methods:

public Object up (Event evt);

public Object down (Event evt);

Protocol processing therefore happens by passing events up and down the stack. In

JGroups, events may be incoming or outgoing messages or management events, for

example related to view changes. Each layer can carry out arbitrary processing on

the message, including modifying its contents, adding a header or indeed dropping

or reordering the message.

Protocol that consists of five layers:

CSE DEPARTMENT, NCERC PAMPADY Page 64

• The layer referred to as UDP is the most common transport layer in JGroups. Note

that, despite the name, this is not entirely equivalent to the UDP protocol; rather, the

layer utilizes IP multicast for sending to all members in a group and UDP datagrams

specifically for point-to-point communication. This layer therefore assumes that IP

multicast is available.

If it is not, the layer can be configured to send a series of unicast messages to

members, relying on another layer for membership discovery (in particular, a layer

known as PING). For larger-scale systems operating over wide area networks, a TCP

layer may be preferred (using the TCP protocol to send unicast messages and again

relying on PING for membership discovery).

• FRAG implements message packetization and is configurable in terms of the

maximum message size (8,192 bytes by default).

• MERGE is a protocol that deals with unexpected network partitioning and the

subsequent merging of subgroups after the partition. A series of alternative merge

layers are actually available, ranging from the simple to ones that deal with, for

example, state transfer.

• GMS implements a group membership protocol to maintain consistent views of

membership across the group

• CAUSAL implements causal ordering.

Multicast communication

Multicast operation is an operation that sends a single message from one process to

each of the members of a group of processes. The simplest way of multicasting,

provides no guarantees about message delivery or ordering. Multicasting has the

following characteristics,

1. Fault tolerance based on replicated services

2. Finding the discovery servers in spontaneous networking.

3. Better performance through replicated data.

4. Propagation of event notifications

CSE DEPARTMENT, NCERC PAMPADY Page 65

IP Multicast – an implementation of group communication.

IP multicast is built on top of the Internet protocol, IP. IP multicast allows the sender

to transmit a single IP packet to a multicast group. A multicast group is specified by

class D IP address for which first 4 bits are 1110 in Ipv4. The membership of a

multicast group is dynamic, allowing computers to join or leave at any time and to

join an arbitrary number of groups. It is possible to send datagrams to a multicast

group without being a member. An application program performs multicasts by

sending UDP datagrams with multicast addresses and ordinary port numbers. The

following details are specific to IPv4:

● Multicast routers: IP packets can be multicast both on a local network and on the

wider Internet. To limit the distance of propagation of a multicast datagram, the

sender can specify the number of routers it is allowed to pass – called the time to

live, or TTL for short.

● Multicast address allocation: Class D addresses (that is, addresses in the range

224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managed

globally by the Internet Assigned Numbers Authority (IANA). This document

defines a partitioning of this address space into a number of blocks, including:

Multicast addresses may be permanent or temporary. Permanent groups exist even

when there are no members – their addresses are assigned by IANA and span the

various blocks mentioned above. Addresses are reserved for a variety of purposes,

from specific Internet protocols to given organizations that make heavy use of

multicast traffic, including multimedia broadcasters and financial institutions. The

remainder of the multicast addresses are available for use by temporary groups,

which must be created before use and cease to exist when all the members have left.

Failure model for multicast datagrams • Datagrams multicast over IP multicast

have the same failure characteristics as UDP datagrams – that is, they suffer from

omission failures. The effect on a multicast is that messages are not guaranteed to

be delivered to any particular group member in the face of even a single omission

failure.

CSE DEPARTMENT, NCERC PAMPADY Page 66

Java API to IP multicast • The Java API provides a datagram interface to IP

multicast through the class MulticastSocket, which is a subclass of DatagramSocket

with the additional capability of being able to join multicast groups. A process can

join a multicast group with a given multicast address by invoking the joinGroup

method of its multicast socket. A process can leave a specified group by invoking

the

leaveGroup method of its multicast socket. The Java API allows the TTL to be set

for a multicast socket by means of the setTimeToLive method.

Reliability and ordering of multicast

A datagram sent from one multicast router to another may be lost, thus preventing

all recipients beyond that router from receiving the message. Also, when a multicast

on a local area network uses the multicasting capabilities of the network to allow a

single datagram to arrive at multiple recipients, any one of those recipients may drop

the message because its buffer is full. Another factor is that any process may fail. If

a multicast router fails, the group members beyond that router will not receive the

multicast message, although local members may do so.

Ordering is another issue. IP packets sent over an internetwork do not necessarily

arrive in the order in which they were sent, with the possible effect that some group

members receive datagrams from a single sender in a different order from other

group members. Characteristics are,

1. Fault tolerance based on replicated services: Consider a replicated service that

consists of the members of a group of servers that start in the same initial state and

always perform the same operations in the same order, so as to remain consistent

with one another.

2.Discovering services in spontaneous networking : One way for a process to

discover services in spontaneous networking is to multicast requests at periodic

intervals, and for the available services to listen for those multicasts and respond.

3. Better performance through replicated data: Consider the case where the

replicated data itself, rather than operations on the data, are distributed by means of

CSE DEPARTMENT, NCERC PAMPADY Page 67

multicast messages. The effect of lost messages and inconsistent ordering would

depend on the method of replication and the importance of all replicas being totally

up-to-date.

4. Propagation of event notifications: The particular application determines the

qualities required of multicast.

Remote Procedure call

Applications composed of cooperating programs running in several different

processes. Such programs need to invoke operations in other processes.

RPC – client programs call procedures in server programs, running in separate and

remote computers

RMI – an object in one process can invoke methods of objects in another process

The earliest and perhaps the best-known programming model for distributed

programming allows client programs to call procedures in server programs running

in separate processes and generally in different computers from the client. RPC is a

kind of request–response protocol. An RPC is initiated by the client , which sends a

request message to a known remote server to execute a specified procedure with

supplied parameters. The remote server sends a response to the client, and the

application continues its process. While the server is processing the call, the client

is blocked (it waits until the server has finished processing before resuming

execution), unless the client sends an asynchronous request to the server.

Design issues for RPC

There are three issues that are important in understanding this concept:

• the style of programming promoted by RPC – programming with interfaces;

• the call semantics associated with RPC;

• the key issue of transparency and how it relates to remote procedure calls.

CSE DEPARTMENT, NCERC PAMPADY Page 68

Programming with interfaces : Most modern programming languages provide a

means of organizing a program as a set of modules that can communicate with one

another. Communication between modules can be by means of procedure calls

between modules or by direct access to the variables in another module. In order to

control the possible interactions between modules, an explicit interface is defined

for each module. The interface of a module specifies the procedures and the variables

that can be accessed from other modules. Interfaces in distributed systems: In a

distributed program, the modules can run in separate processes. In the client-server

model, in particular, each server provides a set of procedures that are available for

use by clients.

An RPC mechanism can be integrated with a particular programming language if it

includes an adequate notation for defining interfaces. Interface definition languages

(IDLs) are designed to allow procedures implemented in different languages to

invoke one another.

RPC call semantics: The main choices are,

● Retry request message: Controls whether to retransmit the request message until

either a reply is received or the server is assumed to have failed.

● Duplicate filtering: Controls when retransmissions are used and whether to filter

out duplicate requests at the server.

● Retransmission of results: Controls whether to keep a history of result messages

to enable lost results to be retransmitted without re-executing the operations at the

server.

The choices of RPC invocation semantics are defined as follows,

● Maybe semantics: With maybe semantics, the remote procedure call may be

Executed once or not at all.

CSE DEPARTMENT, NCERC PAMPADY Page 69

● At-least-once semantics: With at-least-once semantics, the invoker receives either

a result, in which case the invoker knows that the procedure was executed at least

once, or an exception informing it that no result was received. At-least-once

semantics can be achieved by the retransmission of request messages.

● At-most-once semantics: With at-most-once semantics, the caller receives either a

result, in which case the caller knows that the procedure was executed exactly once,

or an exception informing it that no result was received, in which case the procedure

will have been executed either once or not at all.

Implementation of RPC

The client that accesses a service includes one stub procedure for each procedure in

the service interface. The stub procedure behaves like a local procedure to the client,

but instead of executing the call, it marshals the procedure identifier and the

arguments into a request message, which it sends via its communication module to

the server. When the reply message arrives, it un-marshals the results. The server

process contains a dispatcher together with one server stub procedure and one

service procedure for each procedure in the service interface. The dispatcher selects

one of the server stub procedures according to the procedure identifier in the request

message. The server stub procedure then unmarshals the arguments in the request

message, calls the corresponding service procedure and marshals the return values

for the reply message.

CSE DEPARTMENT, NCERC PAMPADY Page 70

Sequence of events

1. The client calls the client stub. The call is a local procedure call, with parameters

pushed on to the stack in the normal way.

2. The client stub packs the parameters into a message and makes a system call to

send the message. Packing the parameters is called marshalling .

3. The client's communication module sends the message from the client machine to

the server machine.

4. The communication module on the server machine passes the incoming packets

to the dispatcher.

5. The dispatcher selects one of the server stub procedures according to the

procedure identifier in the request message.

6. The server stub unpacks the parameters from the message. Unpacking the

parameters is called unmarshalling .

CSE DEPARTMENT, NCERC PAMPADY Page 71

7. Finally, the server stub calls the server procedure. The reply traces the same steps

in the reverse direction.

Network virtualization

Network virtualization is concerned with the construction of many different virtual

networks over an existing network such as the Internet. Each virtual network can be

designed to support a particular distributed application. It would be impractical to

attempt to alter the Internet protocols to suit each of the many applications running

over them – what might enhance one of them could be detrimental to another. In

addition, the IP transport service is implemented over a large and ever- increasing

number of network technologies. These two factors have led to the interest in

network virtualization.

Overlay networks

An overlay network is a virtual network consisting of nodes and virtual links, which

sits on top of an underlying network (such as an IP network) and offers something

that is not otherwise provided:

A service that is tailored towards the needs of a class of application or a particular

higher-level service – for example, multimedia content distribution.

More efficient operation in a given networked environment – for example

routing in an ad hoc network

An additional feature – for example, multicast or secure communication.

Overlay networks have the following advantages:

• They enable new network services to be defined without requiring changes to the

underlying network, a crucial point given the level of standardization in this area and

the difficulties of amending underlying router functionality.

• They encourage experimentation with network services and the customization of

services to particular classes of application.

CSE DEPARTMENT, NCERC PAMPADY Page 72

• Multiple overlays can be defined and can coexist, with the end result being a more

open and extensible network architecture.

Skype: An example of an overlay network

Skype is a peer-to-peer application offering Voice over IP (VoIP). It also includes

instant messaging, video conferencing and interfaces to the standard telephony

service through SkypeIn and SkypeOut. Skype is an excellent case study of the use

of overlay networks in real world systems, indicating how advanced functionality

can be provided in an applicationspecific manner and without modification of the

core architecture of the Internet.

Skype is a virtual network in that it establishes connections between people. No IP

address or port is required to establish a call. The architecture of the virtual network

supporting Skype is not widely publicized but researchers have studied Skype

through a variety of methods, including traffic analysis, and its principles are now

in the public domain.

Skype architecture

Skype is based on a peer-to-peer infrastructure consisting of ordinary users’

machines (referred to as hosts) and super nodes – super nodes are ordinary Skype

hosts that happen to have sufficient capabilities to carry out their enhanced role.

Super nodes are selected on demand based a range of criteria including bandwidth

available, reachability (the machine must have a global IP address and not be hidden

behind a NAT- enabled router, for example) and availability (based on the length of

time that Skype has been running continuously on that node).

CSE DEPARTMENT, NCERC PAMPADY Page 73

User connection • Skype users are authenticated via a well-known login server.

They then make contact with a selected super node. To achieve this, each client

maintains a cache of super node identities (that is, IP address and port number pairs).

At first login this cache is filled with the addresses of around seven super nodes, and

over time the client builds and maintains a much larger set (perhaps several

hundred).

Search for users • The main goal of super nodes is to perform the efficient search

of the global index of users, which is distributed across the super nodes. The search

is orchestrated by the client’s chosen super node and involves an expanding search

of other super nodes until the specified user is found. On average, eight super nodes

are contacted. A user search typically takes between three and four seconds to

complete for hosts that have a global IP address (and slightly longer, five to six

seconds, if behind a NAT-enabled router).

CSE DEPARTMENT, NCERC PAMPADY Page 74

Voice connection • Once the required user is discovered, Skype establishes a voice

connection between the two parties using TCP for signalling call requests and

terminations and either UDP or TCP for the streaming audio. UDP is preferred but

TCP, along with the use of an intermediary node, is used in certain circumstances to

circumvent firewalls. The software used for encoding and decoding audio plays a

key part in providing the excellent call quality normally attained using Skype, and

the associated algorithms are carefully tailored to operate in Internet environments

at 32 kbps and above.

CSE DEPARTMENT, NCERC PAMPADY Page 75

MODULE 4

Distributed file Systems: Introduction

 A file system is a subsystem of the operating system that performs file

management activities such as organization, storing, retrieval, naming,

sharing, and protection of files.

 A distributed file system (DFS) is a method of storing and accessing files

based in a client/server architecture. In a distributed file system, one or more

central servers store files that can be accessed, with proper authorization

rights, by any number of remote clients in the network.

 Files contain both data and attributes. The data consist of a sequence of data

items, accessible by operations to read and write any portion of the sequence.

 The attributes are held as a single record containing information such as the

length of the file, timestamps, file type, owner’s identity and access control

lists. The shaded attributes in the Fig. are managed by the file system and are

not normally update by user programs.

CSE DEPARTMENT, NCERC PAMPADY Page 76

 The term metadata is often used to refer to all of the extra information stored

by a file system that is needed for the management of files. It includes file

attributes, directories and all the other persistent information used by the file

system.

Distributed file system requirements

(a) Transparency: as the concealment from the user and the application

programmer of the separation of component in a DS.

 Access Transparency: Client programs should be unaware of the

distribution of files. A single set of operations is provided for access to

local and remote files.

 Location transparency: enable files to be accessed without knowledge of

location

 Mobility transparency: allow the movement of file without affecting the

operation of user

 Performance T: Client programs should continue to perform satisfactorily

while the load on the service varies within a specified range.

 Scaling transparency: The service can be expanded by incremental growth

to deal with a wide range of loads and network sizes.

CSE DEPARTMENT, NCERC PAMPADY Page 77

(b) Concurrent file updates : Changes to a file by one client should not interfere

with the operation of other clients simultaneously accessing or changing the same

file.

(c) File replication : In a file service that supports replication, a file may be

represented by several copies of its contents at different locations. It enhances fault

tolerance by enabling clients to locate another server that holds a copy of the file

when one has failed.

(d) Heterogeneity : The service interfaces should be defined so that client and server

software can be implemented for different operating systems and computers.

(e) Fault Tolerance: Service continue to operate in face of failure.

(f) Security: In distributed file systems, there is a need to authenticate client requests

so that access control at the server is based on correct user identities and to protect

the contents of request and reply messages with digital signatures and (optionally)

encryption of secret data.

(g) Efficiency: Provide good level of performance

(h) Consistency: If any changes made to one file, that changes must do in other

replicated copies.

File service architecture

An architecture that offers a clear separation of the main concerns in providing

access to files is obtained by structuring the file service as three components – a flat

file service, a directory service and a client module.

CSE DEPARTMENT, NCERC PAMPADY Page 78

Flat file service • The flat file service is concerned with implementing operations

on the contents of files. Unique file identifiers (UFIDs) are used to refer to files in

all requests for flat file service operations. When the flat file service receives a

request to create a file, it generates a new UFID for it and returns the UFID to the

requester. In comparison with the UNIX interface, our flat file service has no open

and close operations – files can be accessed immediately by quoting the appropriate

UFID. The interface to our flat file service differs from the UNIX file system

interface mainly for reasons of fault tolerance:

Repeatable operations: With the exception of Create, the operations are

idempotent, Repeated execution of Create produces a different new file for each call.

Stateless servers: The interface is suitable for implementation by stateless servers.

Stateless servers can be restarted after a failure and resume operation without any

need for clients or the server to restore any state.

CSE DEPARTMENT, NCERC PAMPADY Page 79

Directory service: The directory service provides a mapping between text names

for files and their UFIDs. Clients may obtain the UFID of a file by quoting its text

name to the directory service.

Client module • A client module runs in each client computer, integrating and

extending the operations of the flat file service and the directory service under a

single application programming interface that is available to user-level programs in

client computers.

CSE DEPARTMENT, NCERC PAMPADY Page 80

Access control:

● An access check is made whenever a file name is converted to a UFID

● A user identity is submitted with every client request, and access checks are

performed by the server for every file operation.

Hierarchic file system • A hierarchic file system such as the one that UNIX provides

consists of a number of directories arranged in a tree structure. Each directory holds

the names of the files and other directories that are accessible from it.

File groups • A file group is a collection of files located on a given server. A server

may hold several file groups, and groups can be moved between servers, but a file

cannot change the group to which it belongs.

Sun Network File System: Sun NFS

The NFS module resides in the kernel on each computer. Requests referring to files

in a remote file system are translated by the client module to NFS protocol operations

and then passed to the NFS server module at the computer holding the relevant file

system. The NFS client and server modules communicate using remote procedure

calls. The RPC interface to the NFS server is open: any process can send requests to

CSE DEPARTMENT, NCERC PAMPADY Page 81

an NFS server; if the requests are valid and they include valid user credentials, they

will be acted upon.

Virtual file system: The integration is achieved by a virtual file system (VFS)

module, which has been added to the UNIX kernel to distinguish between local and

remote files. The file identifiers used in NFS are called file handles.

 The file system identifier field is a unique number that is allocated to each file

system when it is created.

 The i-node number is needed to locate the file in file system and also used to

store its attribute and i-node numbers are reused after a file is removed.

 The i-node generation number is needed to increment each time i-node

numbers are reused after a file is removed. The virtual file system layer has

one VFS structure for each mounted file system and one v-node per open file.

The v-node contains an indicator to show whether a file is local or remote.

Client Integration: The NFS client module cooperates with the virtual file system

in each client machine. It operates in a similar manner to the conventional UNIX file

system, transferring blocks of files to and from the server and caching the blocks in

the local memory whenever possible. If the file is local, the v-node contains a

reference to the index of the local file . If the file is remote, it contains the file handle

of the remote file.

Access control and authentication : the NFS server is stateless and does not keep

files open on behalf of its clients. So the server must check the user’s identity against

the file’s access permission attributes on each request, to see whether the user is

permitted to access the file in the manner requested.

NFS server interface: The file and directory operations are integrated in a single

service; the creation and insertion of file names in directories is performed by a

CSE DEPARTMENT, NCERC PAMPADY Page 82

single create operation, which takes the text name of the new file and the file handle

for the target directory as arguments. The other NFS operations on directories are,

Mount services: Mount is to make a group of files in a file system structure

accessible to a user or user group.

Mount operation: mount(remotehost, remotedirectory, localdirectory)

CSE DEPARTMENT, NCERC PAMPADY Page 83

Client with two remotely mounted file stores. The nodes people and users in file

systems at Server 1 and Server 2 are mounted over nodes students and staff in

Client’s local file store. The meaning of this is that programs running at Client can

access files at Server 1 and Server 2 by using pathnames such as /usr/students/jon

and /usr/staff/ann.

Remote file systems may be hard-mounted or soft-mounted in a client computer.

When a user-level process accesses a file in a file system that is hard-mounted, the

process is suspended until the request can be completed, and if the remote host is

unavailable for any reason the NFS client module continues to retry the request until

it is satisfied. Thus in the case of a server failure, user-level processes are suspended

until the server restarts and then they continue just as though there had been no

failure. But if the relevant file system is soft-mounted, the NFS client module returns

a failure indication to user-level processes after a small number of retries.

Pathname translation : UNIX file systems translate multi-part file pathnames to i-

node references in a step-by-step process. In NFS, pathnames cannot be translated

at a server, because the name may cross a ‘mount point’ at the client – directories

holding different parts of a multi-part name may reside in filesystems at different

servers. So pathnames are parsed, and their translation is performed in an iterative

manner by the client. Each part of a name that refers to a emote-mounted directory

is translated to a file handle using a separate lookup request to the remote server.

Automounter : The automounter was added to the UNIX implementation of NFS

in order to mount a remote directory dynamically whenever an ‘empty’ mount point

is referenced by a client. Caching in both the client and the server computer are

indispensable features of NFS implementations in order to achieve adequate

performance.

CSE DEPARTMENT, NCERC PAMPADY Page 84

Server caching: NFS servers use the cache at the server machine just as it is used

for other file accesses. The use of the server’s cache to hold recently read disk blocks

does not raise any consistency problems; but when a server performs write

operations, extra measures are needed to ensure that clients can be confident that the

results of the write operations are persistent, even when server crashes occur. The

write operation offers two options for this :

1. Data in write operations received from clients is stored in the memory cache at

the server and written to disk before a reply is sent to the client. This is called write-

through caching. The client can be sure that the data is stored persistently as soon as

the reply has been received.

2. Data in write operations is stored only in the memory cache. It will be written to

disk when a commit operation is received for the relevant file. The client can be sure

that the data is persistently stored only when a reply to a commit operation for the

relevant file has been received. Standard NFS clients use this mode of operation,

issuing a commit whenever a file that was open for writing is closed.

Client caching • The NFS client module caches the results of read, write, getattr,

lookup and readdir operations in order to reduce the number of requests transmitted

to servers. A timestamp-based method is used to validate cached blocks before they

are used. Each data or metadata item in the cache is tagged with two timestamps:

-Tc is the time when the cache entry was last validated.

-Tm is the time when the block was last modified at the server.

Securing NFS with Kerberos •

The security of NFS implementations has been strengthened by the use of the

Kerberos scheme to authenticate clients. In the original standard implementation of

NFS, the user’s identity is included in each request in the form of an unencrypted

numeric identifier. NFS does not take any further steps to check the authenticity of

the identifier supplied. This implies a high degree of trust in the integrity of the client

computer and its software by NFS, whereas the aim of Kerberos and other

authentication-based security systems is to reduce to a minimum the range of

CSE DEPARTMENT, NCERC PAMPADY Page 85

components in which trust is assumed. Essentially, when NFS is used in a

‘Kerberized’ environment it should accept requests.

NAME

In a distributed system names are used to refer to a wide variety of resources such

as computers, services, remote objects, and files as well as users. Names are used

for identification as well as for describing attributes.

Names = strings used to identify objects (files, computers, people, processes,

objects)

● Textual names: Human-readable names are file names such as /etc/passwd,

URLs such as http://www.cdk5.net/ and Internet domain names such as

www.cdk5.net .

● Numeric addresses: , e.g. 193.206.186.100 (IP host address)

● Object identifiers : object’s address: a value that identifies the location of the

object rather than the object itself.

For many purposes, names are preferable to identifiers, because the binding of the

named resource to a physical location is deferred and can be changed and also they

are more meaningful to users.

Currently, different name systems are used for each type of resource:

● file-pathname

● process-process id

● Port-port number

Uniform Resource Identifiers (URI) offer a general solution for any type of resource.

There two main classes:

-URL: Uniform Resource Locator

• typed by the protocol field (http, ftp, nfs, etc.)

• part of the name is service-specific

CSE DEPARTMENT, NCERC PAMPADY Page 86

• resources cannot be moved between domains

-URN: Uniform Resource Name

• requires a universal resource name lookup service

Format: urn: <nameSpace>:<name-within namespace>

- Examples:

a) urn:ISBN:021-61918-0

b) urn:dcs.qmul.ac.uk :TR2007-5

a)send a request to nearest ISBN-lookup service - it would return whatever attributes

of a book are required by the requester

b)send a request to the urn lookup service at dcs.qmul.ac.uk

- it would return a url for the relevant document

Name services

Name System (or Service) an Internet service that translates textual names and

attributes for objects.

Examples of Name Services

● File system: maps file name to file

● RMI registry:binds remote objects to symbolic names

● DNS: maps domain names to IP addresses

● X.500/LDAP directory service: maps person’s name to email address, phone

number

Every time you use a domain name, therefore, a DNS service must translate the name

into the corresponding IP address. For example, the domain name

www.example.com might translate to 198.105.232.4.

Name management is separated from other services largely because of the openness

of distributed systems, which brings the following motivations:

CSE DEPARTMENT, NCERC PAMPADY Page 87

● Unification: It is often convenient for resources managed by different services to

use the same naming scheme. URIs are a good example of this.

● Integration: It is not always possible to predict the scope of sharing in a distributed

system. It may become necessary to share and therefore name resources that were

created in different administrative domains.

Three Design issues,

● Name spaces

● Name Resolution

● The domain name system

NAMESPACE AND DOMAIN NAME SYSTEM

CSE DEPARTMENT, NCERC PAMPADY Page 88

DNS is the name service provided by the Internet for TCP/IP networks. DNS is

broken up into domains, a logical organization of computers that exist in a larger

network. Names may have an internal structure that represents their position,

● Hierarchy Namespace

● Flat name space: Single global context and naming authority for all names. So

difficult to manage

Naming domains • A naming domain is a name space for which there exists a single

overall administrative authority responsible for assigning names within it.eg.- .net,

.com. The domains exist at different levels and connect in a hierarchy that resembles

the root structure of a tree. Each domain extends from the node above it, beginning

at the top with the root-level domain.

Under the root-level domain are the top-level domains, under those are the second-

level domains, and on down into subdomains. DNS namespace identifies the

structure of the domains that combine to form a complete domain name. For

example, in the domain name sub.secondary.com, "com" is the top-level domain,

"secondary" identifies the secondary domain name (commonly a site hosted by an

organization and/or business), and "sub" identifies a subdomain within the larger

network. This entire DNS domain structure is called the DNS namespace. The name

assigned to a domain or computer relates to its position in the namespace.

CSE DEPARTMENT, NCERC PAMPADY Page 89

Aliases • An alias is a name defined to denote the same information as another name.

eg.- http://espn.go.com/ and http://www.espn.com

Combining and customizing name spaces • The DNS provides a global and

homogeneous name space in which a given name refers to the same entity, no matter

which process on which computer looks up the name.

Merging: how to merge the entire UNIX file systems of two (or more) computers

called red and blue. Each computer has its own root, with overlapping file names.

For example, /etc/passwd refers to one file on red and a different file on blue. The

obvious way to merge the file systems is to replace each computer’s root with

a‘super root’ and mount each computer’s file system in this super root, say as /red

and /blue. Users and programs can then refer to /red/etc/passwd and

/blue/etc/passwd.

CSE DEPARTMENT, NCERC PAMPADY Page 90

Domain name system(DNS)

Domain names

• The DNS is designed for use in multiple implementations, each of which may have

its own name space. In practice, however, only one is in widespread use, and that is

the one used for naming across the Internet. The Internet DNS name space is

partitioned both organizationally and according to geography. The names are written

with the highest-level domain on the right. The original top-level organizational

domains (also called generic domains) in use across the Internet were:

● com - Commercial organizations

● edu- Universities and other educational institutions

● gov- governmental agencies

● mil- military organizations

● net- Major network support centres

● org- Organizations

● int- International organizations

In addition, every country has its own domains:

● us-United States

● uk-United Kingdom

● fr-France

DNS queries: The Internet DNS is primarily used for simple host name resolution

and for looking up electronic mail hosts, as follows

● Host name resolution:when a web browser is given a URL containing the domain

name www.dcs.qmul.ac.uk, it makes a DNS enquiry and obtains the corresponding

IP address.

● Mail host location: Electronic mail software uses the DNS to resolve domain

names into the IP addresses of mail hosts. For example, when the address

tom@dcs.rnx.ac.uk is to be resolved, the DNS is queried with the address

dcs.rnx.ac.uk and the type designation ‘mail’. It returns a list of domain names of

hosts that can accept mail for dcs.rnx.ac.uk Some other types of query that are

CSE DEPARTMENT, NCERC PAMPADY Page 91

implemented in some installations but are less frequently used than those just given

are:

● Reverse resolution: Some software requires a domain name to be returned given

an IP address.

● Host information: The DNS can store the machine architecture type and operating

system with the domain names of hosts.

DNS name servers: A ll host names and addresses in one large master file stored

on one central host. Every domain name, which is a part of the DNS system, has

several DNS settings, also known as DNS records. In order for these DNS records

to be kept in order, the DNS zone was created. Every zone must have at least two

name servers

● exactly one master (= primary) server: contains the only writable copy of the “zone

file”

● one or more secondary (= slave) servers: copies its zone file from the master

DNS server caching the lookup result for a limited time, known as its Time To Live

(TTL), ranging from a few minutes to a few days. People managing a DNS server

can configure its TTL, so TTL values will vary across the Internet.

DNS resource records:

CSE DEPARTMENT, NCERC PAMPADY Page 92

DNS holds resource records (RR).

BIND or Berkeley Internet Name Domain , is most widely used Open source

software that implements DNS protocols for internet, which provides us ability to

implement IP to domain name conversion & vice-versa .

Name resolution (Name resolver)

DNS name resolution is nothing but resolving host names, such as

www.nixcraft.com, to their corresponding IP addresses. DNS works as the phone

book” for the Internet by translating hostname into IP address or vise versa.

Name servers and navigation

DNS, that stores a very large database and is used by a large population will not store

all of its naming information on a single server computer. The process of locating

http://www.nixcraft.com/

CSE DEPARTMENT, NCERC PAMPADY Page 93

naming data from more than one name server in order to resolve a name is called

navigation.

● iterative navigation

● Multicast navigation

● server control navigation

-Recursive navigation

-Nonrecursive navigation

Iterative navigation:

To resolve a name, a client presents the name to the local name server, which

attempts to resolve it. If the local name server has the name, it returns the result

immediately. If it does not, it will suggest another server that will be able to help.

DNS supports the model known as iterative navigation. Resolution continues until

name resolved or name found to be unbound.

Example: If you enter www.example.com in the browser, the operating system's

resolver will send this query for the record to the a DNS server NS1. On receiving

the query, it will look through its tables(cache) to find the IP address for the domain

CSE DEPARTMENT, NCERC PAMPADY Page 94

www.example.com. But if it does not have the entry then NS1 will reply back to

client with a referral to another servers. Then operating system resolver, will send

the query to NS2. And it continues the process until it resolved.

Multicast navigation:

In multicast navigation, a client multicasts the name to be resolved and the required

object type to the group of name servers. Only the server that holds the named

attributes responds to the request.

Non-recursive server-controlled navigation

Under non-recursive server-controlled navigation, any name server may be chosen

by the client. This server communicates by multicast or iteratively with its peers in

the style described above, as though it were a client.

Example: If you enter www.example.com in the browser, the operating system's

resolver will send this query for the record to the a DNS server NS1. On receiving

the query, it will look through its tables(cache) to find the IP address for the domain

CSE DEPARTMENT, NCERC PAMPADY Page 95

www.example.com. But if it does not have the entry then NS1 contacts peers if it

cannot resolve name itself by multicast or iteratively by direct contact. Answer for

the query will send back to client by NS1.

Recursive server-controlled navigation:

Under recursive server-controlled navigation, the client once more contacts a single

server. If this server does not store the name, the server contacts a peer storing a

(larger) prefix of the name, which in turn attempts to resolve it. This procedure

continues recursively until the name is resolved.

Example: If you enter www.example.com in the browser, the operating system's

resolver will send this query for the record to the a DNS server NS1. On receiving

the query, it will look through its tables(cache) to find the IP address for the domain

www.example.com. But if it does not have the entry then NS1 contacts NS2. If NS2

does not have the entry then send the query to NS3. Answer for the query will send

back to client by NS1. This procedure continues recursively until the name is

resolved. Answer for the query will send back to client by NS1.

CSE DEPARTMENT, NCERC PAMPADY Page 96

Caching • In DNS and other name services, client name resolution software and

servers maintain a cache of the results of previous name resolutions. When a client

requests a name lookup, the name resolution software consults its cache.

Directory services

A directory service is the collection of software and processes that store information

(name,attribute). An example of a directory service is the Domain Name System

(DNS), which is provided by DNS servers. A DNS server stores the mappings of

computer host names and other forms of domain name to IP addresses. A DNS client

sends questions to a DNS server about these mappings (e.g. what is the IP address

of test.example.com?). Thus, all of the computing resources (hosts) become clients

of the DNS server. The mapping of host names enables users of the computing

resources to locate computers on a network, using host names rather than complex

numerical IP addresses.

Directory services are sometimes called yellow pages services, and conventional

name services are correspondingly called white pages services, in an analogy with

the traditional types of telephone directory. Directory services are also sometimes

known as attribute-based name services, eg. X.500, LDAP, MS Active Directory

Services. However, any organization that plans to base its applications on web

services will find it more convenient to use a directory service to make these services

available to clients. This is the purpose of the Universal Description, Discovery and

Integration service (UDDI). UDDI provides both white pages and yellow pages

services (a white pages service by name or a yellow pages service by attribute(IP)).

Discovery service: a special case of a directory service for services provided by

devices in a spontaneous networking environment

● automatically updated as the network configuration changes

● discovers services required by a client (who may be mobile) within the current

scope, for example, to find the most suitable printing service for image files after

arriving at a hotel

CSE DEPARTMENT, NCERC PAMPADY Page 97

Case study: The Global Name Service

Designed and implemented by Lampson and colleagues at the DEC Systems

Research Center (1986). Mainly used to merge two more name servers.

● Also Provide facilities for resource location, email addressing and authentication

The GNS manages a naming database that is composed of a tree of directories

holding names and values. Directories are named by multi-part pathnames referred

to a root, or relative to a working directory, much like file names in a UNIX file

system. Each directory is also assigned an integer, which serves as a unique directory

identifier (DI) and EC is directory. A directory contains a list of names and

references. The values stored at the leaves of the directory tree are organized into

value trees , so that the attributes associated with names can be structured values.

Names in the GNS have two parts: < directory name , value name >. The first part

identifies a directory; the second refers to a value tree, or some portion of a value

tree.

Mechanism -> add a new root node and make the exiting root node its children

Eg.The attributes of a

user Peter.Smith in the directory

QMUL would be stored in the value tree named <EC/UK/AC/QMUL, Peter.Smith>.

The value tree includes a password, which can be referenced as

<EC/UK/AC/QMUL, Peter.Smith/password>, and several mail addresses, each of

CSE DEPARTMENT, NCERC PAMPADY Page 98

which would be listed in the value tree as a single node with the name

<EC/UK/AC/QMUL, Peter.Smith/mailboxes>.

At the level of clients and administrators, growth is accommodated through

extension of the directory tree in the usual manner. But we may wish to integrate the

naming trees of two previously separate GNS services.For example, how could we

integrate the database rooted at the EC directory shown in above Figure with another

database for NORTH AMERICA.Below Figure shows a new root, WORLD,

introduced above the existing roots of the two trees to be merged. Here only Problem

is Existing names need to be changed.

For example, </UK/AC/QMUL, Peter.Smith> is a name used by clients before

integration. The root it refers to is EC, not WORLD. EC and NORTH AMERICA

are working roots – initial contexts against which names beginning with the root ‘/’

are to be looked up.The existence of unique directory identifiers can be used to solve

this problem. The working root for each program must be identified as part of its

execution environment (much as is done for a program’s working directory). When

a client in the European Community uses a name of the form </UK/AC/QMUL,

Peter.Smith>, its local user agent, which is aware of the working root, prefixes the

directory identifier EC(#599), thus producing the name <#599/UK/AC/QMUL,

Peter.Smith>.

Case study: The X.500 Directory Service

X.500 is a standard for directory services developed by the International

CSE DEPARTMENT, NCERC PAMPADY Page 99

Telecommunications Union (ITU), the most recent version of which was published

in 1993. It uses a distributed approach to implement a global directory service. Such

a directory is sometimes called a global White Pages directory. The X.500 directory

is organized under a common "root" directory in a "tree" hierarchy of:

country,organization, organizational unit, and person.

In X.500, each local directory is called a Directory System Agent (DSA). A DSA

can represent one organization or a group of organizations. The X.500 name tree is

called then Directory Information Tree (DIT), and the entire directory structure

including the data associated with the nodes, is called the Directory Information

Base (DIB).

The user interface program for access to one or more DSAs is a Directory User Agent

(DUA). The University of Michigan is one of a number of universities that use X.500

as a way to route e-mail as well as to provide name lookup, using the Lightweight

Directory Access Protocol (LDAP).

CSE DEPARTMENT, NCERC PAMPADY Page 100

MODULE 5

TRANSACTIONS

A transaction is a single logical unit of work which accesses and possibly modifies

the contents of a database. Transactions access data using read and write operations.

Let’s take an example of a simple transaction. Suppose a bank employee transfers

Rs 500 from A's account to B's account. This very simple and small transaction

involves several low-level tasks.

A’s Account

Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

Close_Account(A)

B’s Account

Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

In order to maintain consistency in a database, before and after transaction, certain

properties are followed. These are called ACID properties.

● Atomicity:

By this, we mean that either the entire transaction takes place at once or doesn’t

happen at all. There is no midway i.e. transactions do not occur partially. Each

transaction is considered as one unit and either runs to completion or is not executed

at all. It involves following two operations. Atomicity is also known as the ‘All or

nothing rule’.

—Abort: If a transaction aborts, changes made to database are not visible.

—Commit: If a transaction commits, changes made are visible.

Consider the following transaction T consisting of T1 and T2: Transfer of 100 from

account X to account Y.

CSE DEPARTMENT, NCERC PAMPADY Page 101

If the transaction fails after completion of T1 but before completion of T2.(say, after

write(X) but before write(Y)), then amount has been deducted from X but not added

to Y. This results in an inconsistent database state. Therefore, the transaction must

be executed in entirety in order to ensure correctness of database state.

● Consistency:

This means that integrity constraints must be maintained so that the database is

consistent before and after the transaction. It refers to correctness of a database.

Referring to the example above,

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, database is consistent. Inconsistency occurs in case T1 completes but T2

fails. As a result T is incomplete.

● Isolation:

This property ensures that multiple transactions can occur concurrently without

leading to inconsistency of database state. Transactions occur independently without

interference. Changes occurring in a particular transaction will not be visible to any

other transaction until that particular change in that transaction is written to memory

or has been committed. This property ensures that the execution of transactions

concurrently will result in a state that is equivalent to a state achieved these were

executed serially in some order.

CSE DEPARTMENT, NCERC PAMPADY Page 102

● Durability:

This property ensures that once the transaction has completed execution, the updates

and modifications to the database are stored in and written to disk and they persist

even is system failure occurs. These updates now become permanent and are stored

in a non-volatile memory.

The effects of the transaction, thus, are never lost Transaction sequence must

continue until:

● COMMIT statement is reached

● ROLLBACK statement is reached

● End of program is reached

● Program is abnormally terminated

SQL statements that provide transaction support,

● COMMIT

● ROLLBACK

Transaction capabilities can be added to servers of recoverable objects. Each

transaction is created and managed by a coordinator.

Service actions related to process crashes • If a server process crashes

unexpectedly, it is eventually replaced. The new server process aborts any

uncommitted transactions and uses a recovery procedure to restore the values of the

objects to the values produced by the most recently committed transaction. To deal

with a client that crashes unexpectedly during a transaction, servers can give each

transaction an expiry time and abort any transaction that has not completed before

its expiry time.

CSE DEPARTMENT, NCERC PAMPADY Page 103

Client actions related to server process crashes • If a server crashes while a

transaction is in progress, the client will become aware of this when one of the

operations returns an exception after a timeout. If a server crashes and is then

replaced during the progress of a transaction, the transaction will no longer be valid

and the client must be informed via an exception to the next operation. In either case,

the client must then formulate a plan, possibly in consultation with the human user,

for the completion or abandonment of the task of which the transaction was a part.

Concurrency control

Concurrency controlling techniques ensure that multiple transactions are executed

simultaneously while maintaining the ACID properties of the transactions and

serializability in the schedules. Serializability is a concept that helps to identify

which non-serial schedules are correct and will maintain the consistency of the

database. The various approaches for concurrency control,

● Lock based concurrency control

● Timestamp concurrency control

● Optimistic concurrency control

Simultaneous execution of transactions over a shared database can create several

data integrity and consistency problems.

● Lost Update:

● Dirty Read Problems

● Inconsistent Retrievals

Lost Update: This problem occurs when two transactions that access the same

database items, have their operations in a way that makes the value of some database

item incorrect.

In other words, if transactions T1 and T2 both read a record and then update it, the

effects of the first update will be overwritten by the second update.

Example:

Consider the situation given in figure that shows operations performed by two

transactions, Transaction- A and Transaction- B with respect to time.

CSE DEPARTMENT, NCERC PAMPADY Page 104

At time t1 , Transactions-A reads value of X.

At time t2 , Transactions-B reads value of X.

At time t3,Transactions-A writes value of X on the basis of the value seen at time

t1.

At time t4,Transactions-B writes value of X on the basis of the value seen at time t2.

So,update of Transactions-A is lost at time t4,because Transactions-B overwrites it

without looking at its current value.

Such type of problem is referred as the Update Lost Problem, as update made by one

transaction is lost here

Dirty Read Problems: This problem occurs when one transaction reads changes the

value while the other reads the value before committing or rolling back by the first

transaction.

Example:

Consider the situation given in figure :

CSE DEPARTMENT, NCERC PAMPADY Page 105

At time t1 , Transactions-B writes value of X.

At time t2 , Transactions-A reads value of X.

At time t3 , Transactions-B rollbacks.So,it changes the value of X back to that of

prior to t1.

So,Transaction-A now has value which has never become part of the stable database.

Such type of problem is referred as the Dirty Read Problem, as one transaction reads

a dirty value which has not been committed.

Inconsistent Retrievals(Unrepeatable Read Problem) : occurs when a

transaction calculates some summary (aggregate) function over a set of data while

other transactions are updating the data. example: let x=10, y=20, z=20

CSE DEPARTMENT, NCERC PAMPADY Page 106

Serializability : Serializability is a concept that helps to identify which non-serial

schedules are correct and will maintain the consistency of the database(Interleaved

execution of transactions yields the same results as the serial execution of the

transactions.)

Conflicting operations: Two operations are called as conflicting operations if all

the following conditions hold true for them-

● Both the operations belong to different transactions

● Both the operations are on same data item

● Read – Read (No conflict)

● Read – Write (or Write – Read)Conflict!

● Write – Write (Conflict)

Example-

Consider the following schedule-

In this schedule, W1 (A) and R2 (A) are called as conflicting operations because all

the above conditions hold true for them.

Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects

of aborted transactions. This section illustrates two problems associated with

aborting transactions,

● dirty reads

● premature

CSE DEPARTMENT, NCERC PAMPADY Page 107

Dirty reads • The isolation property of transactions requires that transactions do not

see the uncommitted state of other transactions. The ‘dirty read’ problem is caused

by the interaction between a read operation in one transaction and an earlier write

operation in another transaction on the same object

T2 sees result update by T1 on account A

T2 performs its own update on A & then commits.

T1 aborts -> T2 has seen a “transient” value

T2 is not recoverable

The failure of one transaction causes several other dependent transactions to rollback

or abort, then such a schedule is known as a cascading schedule or cascading

rollback or cascading abort .

Premature writes:

Assume server implements abort by maintaining the “before” image of all update

operations

T1 & T2 both updates account A

T1 completes its work before T2

If T1 commits & T2 aborts, the balance of A is correct

If T1 aborts & T2 commits, the “before” image that is restored corresponds to the

balance of A before T2

For recoverability:

A commit is delayed until after the commitment of any other transaction whose state

has been observed (Tx’s should be delayed until earlier Tx’s that update the Same

objects have been either committed or aborted.)

CSE DEPARTMENT, NCERC PAMPADY Page 108

NESTED TRANSACTIONS

The nested transaction is a transaction that is created inside another transaction. A

nested transaction is used to provide a transactional guarantee for a subset of

operations performed within the scope of a larger transaction. Doing this allows you

to commit and abort the subset of operations independently of the larger transaction.

Nested transactions have the following main advantages:

1. Subtransactions at one level (and their descendants) may run concurrently with

other subtransactions at the same level in the hierarchy.

2. Subtransactions can commit or abort independently.

The rules to the usage of a nested transaction are as follows:

● While the nested (child) transaction is active, the parent transaction may not

perform any operations other than to commit or abort, or to create more child

transactions.

● Committing a nested transaction has no effect on the state of the parent transaction.

The parent transaction is still uncommitted.

● Likewise, aborting the nested transaction has no effect on the state of the parent

transaction.

CSE DEPARTMENT, NCERC PAMPADY Page 109

● If the parent aborts, then the child transactions abort as well. If the parent commits,

then whatever modifications have been performed by the child transactions are also

committed.

LOCKS

Database systems equipped with lock-based protocols use a mechanism by which

any transaction cannot read or write data until it acquires an appropriate lock on it.

Locks are of two kinds ,

● Binary Locks − A lock on a data item can be in two states; it is either locked or

unlocked.

● Shared/exclusive − If a lock is acquired on a data item to perform a write operation,

it is an exclusive lock. Allowing more than one transaction to write on the same data

item would lead the database into an inconsistent state. Read locks are shared

because no data value is being changed.

Types of lock protocols,

● Single phase locking

● Two phase locking- 2PL

● Strict two phase locking

Single phase : lock-based protocols allow transactions to obtain a lock on every

object before a operation is performed. Transactions may unlock the data item after

completing the operation.

Two phase: This locking protocol divides the execution phase of a transaction into

three parts. In the first part, when the transaction starts executing, it seeks permission

CSE DEPARTMENT, NCERC PAMPADY Page 110

for the locks it requires. The second part is where the transaction acquires all the

locks (Growing phase). Third phase starts, the transaction cannot demand any new

locks; it only releases the acquired locks (Shrinking phase).

Strict Two-Phase Locking: The first phase of Strict-2PL is same as 2PL. After

acquiring all the locks in the first phase, the transaction continues to execute

normally. But in contrast to 2PL, Strict-2PL does not release a lock after using it.

Strict-2PL holds all the locks until the commit point and releases all the locks at a

time.

Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:

(a)If the object is not already locked, it is locked and the operation proceeds.

(b)If the object has a conflicting lock set by another transaction, the transaction must

wait until it is unlocked.

(c)If the object has a non-conflicting lock set by another transaction, the lock is

shared and the operation proceeds.

CSE DEPARTMENT, NCERC PAMPADY Page 111

2. When a transaction is committed or aborted, the server unlocks all objects it

locked for the transaction

Lock implementation

The granting of locks will be implemented by a separate object in the server that we

call the lock manager. The lock manager holds a set of locks. The methods of Lock

are synchronized so that the threads attempting to acquire or release a lock will not

interfere with one another. But, in addition, attempts to acquire the lock use the wait

method whenever they have to wait for another thread to release it.

All requests to set locks and to release them on behalf of transactions are sent to an

instance of LockManager:

• The setLock method’s arguments specify the object that the given transaction wants

to lock and the type of lock.

• The unLock method’s argument specifies the transaction that is releasing its locks.

Locking rules for nested transactions

The aim of a locking scheme for nested transactions is to serialize access to objects

so that,

● Each set of nested transactions is a single entity that must be prevented from

observing the partial effects of any other set of nested transactions.

● Each transaction within a set of nested transactions must be prevented from

observing the partial effects of the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a

successful subtransaction is inherited by its parent when it completes. Inherited locks

are also inherited by ancestors. The top-level transaction eventually inherits all of

the locks that were acquired by successful subtransactions at any depth in a nested

transaction.

The second rule is enforced as follows:

• Parent transactions are not allowed to run concurrently with their child transactions.

This means that the child transaction temporarily acquires the lock from its parent

for its duration.

• Subtransactions at the same level are allowed to run concurrently.

CSE DEPARTMENT, NCERC PAMPADY Page 112

The following rules describe lock acquisition and release:

• For a subtransaction to acquire a read lock on an object, no other active transaction

can have a write lock on that object.

• For a subtransaction to acquire a write lock on an object, no other active transaction

can have a read or write lock on that object.

• When a subtransaction commits, its locks are inherited by its parent

• When a subtransaction aborts, its locks are discarded.

Deadlocks

Deadlock is a state in which each member of a group of transactions is waiting for

some other member to release a lock.The disadvantage of Locking Deadlocks. For

an example, two transaction T & U with two object A & B. T locks A and waits for

U to release the locks on B. Other hand U locks B and waits for T to release the locks

on A -> Deadlock happens.

Four necessary conditions of deadlock are,

● Mutual Exclusion

● Hold and waits

● Non preemption

● circular waits

Strategies to Fight Deadlock

Deadlock Prevention: Violate one of the necessary conditions for deadlock.

Deadlock Avoidance: Have transactions declare max resources they will request,

but allow them to lock at any time (Banker’s algorithm)

Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for

graph. Having detected a deadlock, a transaction must be selected for abortion to

break the cycle.

CSE DEPARTMENT, NCERC PAMPADY Page 113

Timeouts • Lock timeouts are a method for resolution of deadlocks that is commonly

used. Each lock is given a limited period in which it is invulnerable. After this time,

a lock becomes vulnerable. However, if any other transaction is waiting to access

the object protected by a vulnerable lock, the lock is broken (that is, the object is

unlocked) and the waiting transaction resumes.

OPTIMISTIC CONCURRENCY CONTROL

Concurrency control is a concept that is used to address conflicts with the

simultaneous accessing or altering of data that can occur with a multi-user system.

Optimistic concurrency control (OCC) is a concurrency control method applied to

transactional systems. OCC assumes that multiple transactions can frequently

complete without interfering with each other. Each transaction has the following

phases:

● Working Phase

● Validation Phase

● Update Phase

Working Phase: A transaction fetches data items to memory and performs

operations upon them.

Validation Phase: When the closeTransaction request is received, the transaction is

validated to establish whether or not its operations on objects conflict with

operations of other transactions on the same objects.

Update Phase: If a transaction is validated, all of the changes recorded in its

tentative versions are made permanent.

Validation uses the read-write conflict rules to ensure that the scheduling of a

particular transaction is serially equivalent with respect to all other overlapping

transactions – that is, any transactions that had not yet committed at the time this

transaction started. To assist in performing validation, each transaction is assigned a

CSE DEPARTMENT, NCERC PAMPADY Page 114

transaction number when it enters the validation phase. If the transaction is validated

and completes successfully, it retains this number; if it fails the validation checks

and is aborted. The validation rules are,

Two types of Validation,

● Backward Validation

● Forward Validation

Backward Validation: In backward validation, the read set of the transaction being

validated is compared with the write sets of other transactions that have already

committed. Therefore, the only way to resolve any conflicts is to abort the

transaction that is undergoing validation. In backward validation, transactions that

have no read operations (only write operations) need not be checked.

Forward Validation: In forward validation of the transaction Tv, the write set of

Tv is compared with the read sets of all overlapping active tractions- those that are

still in their working phase (rule 1). Rule 2 is automatically fulfilled because that

active transactions do not write until after Tv has completed.

Comparison of forward and backward validation

conflicts-

● Forward validation allows flexibility in the resolution of conflicts. (Two methods

-Defer the validation until a later time when the conflicting transactions have

finished or Abort the transaction being validated).

CSE DEPARTMENT, NCERC PAMPADY Page 115

● Backward validation allows only one choice – to abort the transaction being

validated

Read Set- The read sets of transactions are much larger than the write sets.,

● Backward validation compares a possibly large read set against the old write set

and it has a overhead of storing old write sets.

● Forward validation checks a small write set against the read sets of active

transactions and it has to allow for new transactions starting during the validation

process.

CSE DEPARTMENT, NCERC PAMPADY Page 116

MODULE 6

DISTRIBUTED MUTUAL EXCLUSION

Distributed processes often need to coordinate their activities. If a collection of

processes share a resource or collection of resources, then often mutual exclusion is

required to prevent interference and ensure consistency when accessing the

resources.

The application-level protocol for executing a critical section is as follows:

● enter() : enter critical section – block if necessary

● resourceAccesses() : access shared resources in critical section

● exit(): leave critical section – other processes may now enter

Our essential requirements for mutual exclusion are as follows:

● ME1: (safety) At most one process may execute in the critical section (CS) at a

time.

● ME2: (liveness) Requests to enter and exit the critical section eventually succeed.

ME2 implies freedom from both deadlock and starvation. A deadlock would involve

two or more of the processes becoming stuck indefinitely while attempting to enter

or exit the critical section, by virtue of their mutual interdependence. But even

without a deadlock, a poor algorithm might lead to starvation: the indefinite

postponement of entry for a process that has requested it.

The absence of starvation is a fairness condition.

● ME3: (ordering) If one request to enter the CS happened-before another, then

entry to the CS is granted in that order.

CSE DEPARTMENT, NCERC PAMPADY Page 117

We evaluate the performance of algorithms for mutual exclusion according to the

following criteria:

• the bandwidth consumed,

• the client delay incurred by a process at each entry and exit operation;

• the algorithm’s effect upon the throughput of the system

Algorithms for mutual exclusion

● A central server algorithm

● A ring-based algorithm

● An algorithm using multicast and logic clocks (Ricart and Agarwal)

● Maekawa’s voting algorithm

A central server algorithm

 The simplest way to achieve mutual exclusion is to employ a server that grants

permission to enter the critical section.

CSE DEPARTMENT, NCERC PAMPADY Page 118

 To enter a critical section, a process sends a request message to he server and

awaits a reply from it.

 Conceptually, the reply constitutes a token signifying permission to enter the

critical section.

 If no other process has the token at the time of the request, then the server

replies immediately, granting the token. If the token is currently held by

another process, then the server does not reply, but queues the request. When

a process exits the critical section, it sends a message to the server, giving it

back the token.

Four process p1, p2, p3, p4

● p1- no need to enter critical section (CS)

● p4 & p2 send request the token to enter CS

● But p3 is accessing CS. So p4 & p2 enter the queue.

● P3 released its token

● p4 get the permission to enter CS

● After p4 released , permission grant to p2

A ring-based algorithm

 One of the simplest ways to arrange mutual exclusion between the N processes

without requiring an additional process is to arrange them in a logical ring.

 This requires only that each process p i has a communication channel to the

next process in the ring, p (i + 1)mod N .

 The idea is that exclusion is conferred by obtaining a token in the form of a

message passed from process to process in a single direction- clockwise.

 If a process does not require to enter the critical section when it receives the

token, then it immediately forwards the token to its neighbour.

 A process that requires the token waits until it receives it, but retains it. To

exit the critical section, the process sends the token on to its neighbour.

CSE DEPARTMENT, NCERC PAMPADY Page 119

An algorithm using multicast and logic clocks (Ricart and Agarwal)

 Ricart and Agrawala [1981] developed an algorithm to implement mutual

exclusion between N peer processes that is based upon multicast.

 The basic idea is that processes that require entry to a critical section multicast

a request message, and can enter it only when all the other processes have

replied to this message.

 The conditions under which a process replies to a request are designed to

ensure that conditions ME1–ME3 are met.

CSE DEPARTMENT, NCERC PAMPADY Page 120

To illustrate the algorithm, consider a situation involving three processes, p 1 , p 2

and p 3.

● p 3 is not interested in entering the critical section

● p 1 and p 2 request entry concurrently. Timestamp of p 1 ’s request is 41, and that

of p 2 is 34

● p 3 receives their requests, it replies immediately

● p 2 receives p 1 ’s request, it finds that its own request has the lower timestamp

and so does not reply

● p 1 finds that p 2 ’s request has a lower timestamp than that of its own request and

so replies immediately.

● On receiving this second reply, p 2 can enter the critical section. When p 2 exits

the critical section, it will reply to p 1 ’s request and so grant it entry.

CSE DEPARTMENT, NCERC PAMPADY Page 121

Maekawa’s voting algorithm

 Maekawa observed that in order for a process to enter a critical section, it is

not necessary for all of its peers to grant it access.

 Processes need only obtain permission to enter from subsets of their peers. A

subset contain { p1, p2, p3, p4 }, if p1 wants to enter CS it need only

permission from p2, p3 and p4. ie. A process pi send request msg to all other

k-1 member of vi.

 This algorithm can tolerate some process crash failure. If a crashed process is

not in a voting set then its failure will not affect the other process.

 protocol

– to obtain entry to critical section, pi sends request messages to

all K-1 members of voting set Vi

– cannot enter until K-1 replies received

– when leaving critical section, send release to all members of

Vi

 – when receiving request

 if state = HELD or already replied (voted) since last

request * then queue request

CSE DEPARTMENT, NCERC PAMPADY Page 122

else immediately send reply

– when receiving release remove request at head of queue and

send reply

 deadlocks are possible

 – consider three processes with

V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p3, p1}

– possible to construct cyclic wait graph

 p1 replies to p2, but queues request from p3

 p2 replies to p3, but queues request from p1

 p3 replies to p1, but queues request from p2

 algorithm can be modified to ensure absence of deadlocks

– use of logical clocks

– processes queue requests in happened-before order

– means that ME3 is also satisfied

ELECTIONS

 An algorithm for choosing a unique process to play a particular role

(coordinator) is called an election algorithm. An election algorithm is needed

for this choice. It is essential that all the processes agree on the choice.

 Afterwards, if the process that plays the role of server wishes to retire then

another election is required to choose a replacement. We say that a process

calls the election if it takes an action that initiates a particular run of the

election algorithm.

 At any point in time, a process p i is either a participant – meaning that it is

engaged in some run of the election algorithm – or a non-participant –

meaning that it is not currently engaged in any election.

 Each process p i (i = 1 # 2 # } # N) has a variable elected i , which will

contain the identifier of the elected process.

 When the process first becomes a participant in an election it sets this variable

to the special value ‘ A ’ to denote that it is not yet defined. Our requirements

are that, during any particular run of the algorithm:

CSE DEPARTMENT, NCERC PAMPADY Page 123

E1: (safety) A participant process p i has elected i = A or elected i = P,

where P is chosen as the non-crashed process at the end of the run with the

largest identifier.

E2: (liveness) All processes p i participate and eventually either set

elected i z A – or crash.

Two algorithms,

● A ring-based election algorithm

● Bully algorithm

A ring-based election algorithm

 The algorithm of Chang and Roberts is suitable for a collection of processes

arranged in a logical ring.

 Each process p i has a communication channel to the next process in the ring,

p (i + 1) mod N , and all messages are sent clockwise around the ring.

 The goal of this algorithm is to elect a single process called the coordinator,

which is the process with the largest identifier.

 Initially, every process is marked as a non-participant in an election. Any

process can begin an election.

 It proceeds by marking itself as a participant, placing its identifier in an

election message and sending it to its clockwise neighbour.

 When a process receives an election message, it compares the identifier in the

message with its own.

 If the arrived identifier is greater, then it forwards the message to its

neighbour.

 If the arrived identifier is smaller and the receiver is not a participant, then it

substitutes its own identifier in the message and forwards it; but it does not

forward the message if it is already a participant.

 On forwarding an election message in any case, the process marks itself as a

participant.

 If, however, the received identifier is that of the receiver itself, then this

process’s identifier must be the greatest, and it becomes the coordinator.

CSE DEPARTMENT, NCERC PAMPADY Page 124

 The coordinator marks itself as a non-participant once more and sends an

elected message to its neighbour, announcing its election and enclosing its

identity.

i. The election was started by process 17. Process forward to neighbour

with greatest identifier.

ii. The election message currently contains 24, and forwards

iii. But process 28 will replace this with its identifier when the message

reaches it.

iv. The received identifier is that of the receiver itself, then this process’s

identifier must be the greatest, and it becomes the coordinator and sends

an elected message to its neighbour,

The bully algorithm

 There are three types of message in this algorithm: an election message is sent

to announce an election; an answer message is sent in response to an election

message and a coordinator message is sent to announce the identity of the

elected process.

CSE DEPARTMENT, NCERC PAMPADY Page 125

 The process that knows it has the highest identifier can elect itself as the

coordinator simply by sending a coordinator message to all processes with

lower identifiers.

 On the other hand, a process with a lower identifier can begin an election by

sending an election message to those processes that have a higher identifier

and awaiting answer messages in response.

 If none arrives within time T, the process considers itself the coordinator and

sends a coordinator message to all processes with lower identifiers

announcing this.

 Otherwise, the process waits a further period Tc for a coordinator message to

arrive from the new coordinator.If none arrives, it begins another election.

 If a process p i receives a coordinator message, it sets its variable elected i to

the identifier of the coordinator contained within it and treats that process as

the coordinator.

 If a process receives an election message, it sends back an answer message

and begins another election – unless it has begun one already.

 When a process, P, notices that the coordinator is no longer responding

to requests, it initiates an election.

 P sends an ELECTION message to all processes with higher no.

 If no one responds, P wins the election and becomes a

coordinator.

 If one of the higher-ups answers, it takes over. P’ s job is done.

 When a process gets an ELECTION message from one of its lower-

numbered colleagues:

 Receiver sends an OK message back to the sender to indicate that

he is alive and will take over.

 Receiver holds an election, unless it is already holding one.

 Eventually, all processes give up but one, and that one is the new

coordinator.

CSE DEPARTMENT, NCERC PAMPADY Page 126

 The new coordinator announces its victory by sending all

processes a message telling them that starting immediately it is

the new coordinator.

 If a process that was previously down comes back:

 It holds an election.

 If it happens to be the highest process currently running, it

will win the election and take over the coordinator’ s job.

 Biggest guy” always wins and hence the name “ bully”

algorithm.

CSE DEPARTMENT, NCERC PAMPADY Page 127

CONTENT BEYOND SYLLABUS

DISTRIBUTED COMPUTING VS CLOUD COMPUTING

Cloud computing and distributed computing are two different systems but the fact that they both

use the same concept means the two often leave people a little confused. To understand the two,

you must first understand the underlying concept. It is simply the use of large-scale computer

networks.

Distributed computing is the use of distributed systems to solve single large problems by

distributing tasks to single computers in the distributing systems. On the other hand, cloud

computing is the use of network hosted servers to do several tasks like storage, process and

management of data. Here we will give an in-depth analysis of the two.

Cloud computing

Cloud computing has taken over the IT industry in the recent past. This is due to the fact that it is

cheaper and easier to get services from the cloud. The cloud enables its users to choose how they

will get and deliver IT services. Cloud computing means you can store and access data from the

internet rather than the traditional computer hard disk storage.

This means you can access the data you have stored in the cloud anywhere anytime. The cloud

will help you access the storage, servers, databases and multiple application services all in one

place, the internet.

Benefits of cloud computing

The benefits of cloud computing are simply endless. Here we will list just a few:

Cost effective

The cloud helps you pay for the services you only require. Unlike building servers and databases,

which are extremely expensive to build and maintain, the cloud helps you cut down that cost since

you will pay for only what you are using.

Economies of Scale

By using the cloud, you will gain immensely from benefits of economies of scale. Simply put, you

will get more value for money when using cloud rather than going solo.

Access to the global market

https://www.podc.org/
https://www.dnsstuff.com/what-is-network-topology
http://opencirrus.org/numbers-cloud-cloud-computing-growth-statistics/

CSE DEPARTMENT, NCERC PAMPADY Page 128

When using the cloud, you will have the chance of going global with a few clicks. You can reach

the global audience without spending lots of cash and that’s not all, your customers will get

superior services thanks to the cloud

Distributed computing

Distributed computing can simply be defined as sharing of tasks by different computers which

may be in different parts of the globe. The distributed system which is used here must be in

networked computers so that communication and coordination of the tasks is handled smoothly.

The main goal of distributed computing is to connect the users with the resources thereby

maximizing the performance in a cost-effective way. It is also structured in a way that incase one

of the components fails, the system goes on and the desired results are reached.

Benefits of distributed computing

There are many benefits of distributed computing. Below are just some of them;

Flexibility

One of the best thing about distributed computing is that it is highly flexible. Tasks can be

completed using computers in different geographical areas.

Reliability

A single server can be rocked by glitches which can lead to complete systems malfunctions but

with distributed computing, that is a thing of the past. With distributed computing, a single glitch

cannot result to complete system failures.

Improved performance

Single computers can only perform to their best ability but with distributed computing, you get the

best from across the whole system.

Both cloud computing use the same concept but individually they are two distinct things. As a

business you can use both to improve your business and in return yield higher profits. Some of the

examples of distributed computing are Facebook, World Wide Web and ATM. Examples of cloud

computing are YouTube, Google Docs and Picasa.

CSE DEPARTMENT, NCERC PAMPADY Page 129

SOFTWARE CONCEPT IN DISTRIBUTED COMPUTING

The software of the distributed system is nothing but selection of different operating system

platforms.

The operating system is the interaction between user and the hardware.

There are three largely used operating system types:

a) Distributed operating system

b) Network operating system

c) Middleware operating system

Distributed operating system:

It is different from multiprocessor and multicomputer hardware.

Multiprocessor- uses different system services to manage resources connected in a system and use

system calls to communicate with the processor.

Multicomputer- the distributed Operating system uses a separate uniprocessor OS on each

computer for communicating between different computers.

In distributed OS, a common set of services is shared among multiple processors in such a way

that they are meant to execute a distributed application effectively and also provide services to

separate independent computers connected in a network as shown in fig below

It communicates with all the computer using message passing interface(MPI).

It follows the tightly coupled architecture pattern.

It uses Data structure like queue to manages the messages and avoid message loss between sender

and receiver computer.

Eg Automated banking system, railway reservation system etc.

Disadvantages:

It has a problem of scalability as it supports only limited number of independent computers with

shared resources.

There is need to define message passing semantics prior to the execution of messages.

CSE DEPARTMENT, NCERC PAMPADY Page 130

Fig.

General structure of a multicomputer operating system

Network operating system:

It is specifically designed for hetrogeneous multicomputer system, where multiple hardware and

network platforms are supported.

It has multiple operating system running on different hardware platforms connected in network.

It provides to each computer connected in network.

It follows the loosely coupled architecture pattern which allow user to use services provided by

the local machine itself as shown in fig below.

Eg Remote login where user workstation is used to log in to the remoter server and execute remote

commands over the network.

Eg Centralized file storage system.

Advantage:

It has scalability feature, where large number of resources and users are supported.

Disadvantage:

It fails to provide a single coherent view.

CSE DEPARTMENT, NCERC PAMPADY Page 131

Middle ware operating system:

As distributed operating system has lack of scalability and network operating system fails to

provide a single coherent view, therefore a new layer is formed between the distributed and

network operating system is called the middleware operating system.

It has a common set of services is provided for the local applications and independent set of

services for the remote applications.

It support heterogeneity that is it supports multiple languages and operating system where user

gets freedom to write the application using the any of the supported language under any

platform.

It provide the services such as locating the objects or interfaces by their names, finding the

location of objects, maintaining the quality of services, handling the protocol information,

synchronization, concurrency and security of the objects etc.

CSE DEPARTMENT, NCERC PAMPADY Page 132

Fig(a) Middleware operating system

